Cargando…
Melissa: Bayesian clustering and imputation of single-cell methylomes
Measurements of single-cell methylation are revolutionizing our understanding of epigenetic control of gene expression, yet the intrinsic data sparsity limits the scope for quantitative analysis of such data. Here, we introduce Melissa (MEthyLation Inference for Single cell Analysis), a Bayesian hie...
Autores principales: | Kapourani, Chantriolnt-Andreas, Sanguinetti, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427844/ https://www.ncbi.nlm.nih.gov/pubmed/30898142 http://dx.doi.org/10.1186/s13059-019-1665-8 |
Ejemplares similares
-
scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution
por: Kapourani, Chantriolnt-Andreas, et al.
Publicado: (2021) -
BPRMeth: a flexible Bioconductor package for modelling methylation profiles
por: Kapourani, Chantriolnt-Andreas, et al.
Publicado: (2018) -
CpG Transformer for imputation of single-cell methylomes
por: De Waele, Gaetan, et al.
Publicado: (2021) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
Simultaneous profiling of transcriptome and DNA methylome from a single cell
por: Hu, Youjin, et al.
Publicado: (2016)