Cargando…
The role of Small Intestinal Bacterial Overgrowth (SIBO) in Non-alcoholic Fatty Liver Disease (NAFLD) patients evaluated using Controlled Attenuation Parameter (CAP) Transient Elastography (TE): a tertiary referral center experience
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is an emerging disease, where it can progress to non-alcoholic steatohepatitis (NASH) and lead to liver cirrhosis or liver cancer. Small intestinal bacterial overgrowth (SIBO) has been hypothesized to play an important role in NAFLD development a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427876/ https://www.ncbi.nlm.nih.gov/pubmed/30894137 http://dx.doi.org/10.1186/s12876-019-0960-x |
Sumario: | BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is an emerging disease, where it can progress to non-alcoholic steatohepatitis (NASH) and lead to liver cirrhosis or liver cancer. Small intestinal bacterial overgrowth (SIBO) has been hypothesized to play an important role in NAFLD development and progression, however, there is still conflicting data about this phenomenon. Transient Elastography (TE) examination using controlled attenuation parameter (CAP) has been validated for liver disease progression assessment in NAFLD. It is non-invasive method and easy to perform in clinical practice. Therefore, we would like to know the role of SIBO in NAFLD and its possible impact on disease progression. METHODS: A cross-sectional design study performed at outpatient’s Hepatobiliary clinic at tertiary referral university hospital in Jakarta. All recruited study subjects based on inclusions criteria underwent laboratory examination, transabdominal ultrasound examination, CAP-TE 502 (by Echosens, France), and glucose hydrogen breath test (GHBT) using portable hydrogen breath test apparatus (Gastro+™ Gastrolyzer by Bedfont Scientific Ltd). Stool sample examination was performed using RT-PCR. RESULTS: This study recruited 160 subjects with median age of 58 (22–78) years and 108 (67.5%) of them are female. SIBO (65,5%), DM (70.8%), dyslipidemia (75.2%), obesity (76.6%), and metabolic syndrome (73%) were more prevalent in NAFLD than non-NAFLD population. Bivariate analysis showed no significant association between SIBO and NAFLD development (p = 0.191; PR 0.871; CI 95% [0.306–1.269]). SIBO was also not associated with significant hepatic steatosis (p = 0.951; PR = 0.951; CI 95% [0.452–2.239]) and fibrosis (p = 0.371; PR = 1.369; CI 95% [0.608–3.772]). However, the presence of central obesity has significantly associated with the presence of SIBO (p = 0.001; PR = 0.378; CI 95% [0.021–0.478]). Based on stool sample analysis from 60 NAFLD patients, there is a significant correlation using Spearmen test between the presence of Bacteroides and the stage of fibrosis (p .037). Further analysis between obese NAFLD patients and non-obese NAFLD patients showing that there is a significant decrease of Bifidobacteria (p .047) and Lactobacillus (p .038) in obese NAFLD patients and a tendency of increase Bacteroides in obese NAFLD patients (p .572). CONCLUSIONS: SIBO is not associated with NAFLD development and progression. |
---|