Cargando…
Supervised Brain Tumor Segmentation Based on Gradient and Context-Sensitive Features
Gliomas have the highest mortality rate and prevalence among the primary brain tumors. In this study, we proposed a supervised brain tumor segmentation method which detects diverse tumoral structures of both high grade gliomas and low grade gliomas in magnetic resonance imaging (MRI) images based on...
Autores principales: | Zhao, Junting, Meng, Zhaopeng, Wei, Leyi, Sun, Changming, Zou, Quan, Su, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427904/ https://www.ncbi.nlm.nih.gov/pubmed/30930729 http://dx.doi.org/10.3389/fnins.2019.00144 |
Ejemplares similares
-
Domain adaptation based self-correction model for COVID-19 infection segmentation in CT images
por: Jin, Qiangguo, et al.
Publicado: (2021) -
Unsupervised Few-Shot Feature Learning via Self-Supervised Training
por: Ji, Zilong, et al.
Publicado: (2020) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018) -
Semi-MsST-GAN: A Semi-Supervised Segmentation Method for Corneal Ulcer Segmentation in Slit-Lamp Images
por: Wang, Tingting, et al.
Publicado: (2022) -
Cross-Attention and Deep Supervision UNet for Lesion Segmentation of Chronic Stroke
por: Sheng, Manjin, et al.
Publicado: (2022)