Cargando…
Mental Rotation of Digitally-Rendered Haptic Objects
Sensory substitution is an effective means to rehabilitate many visual functions after visual impairment or blindness. Tactile information, for example, is particularly useful for functions such as reading, mental rotation, shape recognition, or exploration of space. Extant haptic technologies typic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427928/ https://www.ncbi.nlm.nih.gov/pubmed/30930756 http://dx.doi.org/10.3389/fnint.2019.00007 |
_version_ | 1783405317081530368 |
---|---|
author | Tivadar, Ruxandra I. Rouillard, Tom Chappaz, Cédrick Knebel, Jean-François Turoman, Nora Anaflous, Fatima Roche, Jean Matusz, Pawel J. Murray, Micah M. |
author_facet | Tivadar, Ruxandra I. Rouillard, Tom Chappaz, Cédrick Knebel, Jean-François Turoman, Nora Anaflous, Fatima Roche, Jean Matusz, Pawel J. Murray, Micah M. |
author_sort | Tivadar, Ruxandra I. |
collection | PubMed |
description | Sensory substitution is an effective means to rehabilitate many visual functions after visual impairment or blindness. Tactile information, for example, is particularly useful for functions such as reading, mental rotation, shape recognition, or exploration of space. Extant haptic technologies typically rely on real physical objects or pneumatically driven renderings and thus provide a limited library of stimuli to users. New developments in digital haptic technologies now make it possible to actively simulate an unprecedented range of tactile sensations. We provide a proof-of-concept for a new type of technology (hereafter haptic tablet) that renders haptic feedback by modulating the friction of a flat screen through ultrasonic vibrations of varying shapes to create the sensation of texture when the screen is actively explored. We reasoned that participants should be able to create mental representations of letters presented in normal and mirror-reversed haptic form without the use of any visual information and to manipulate such representations in a mental rotation task. Healthy sighted, blindfolded volunteers were trained to discriminate between two letters (either L and P, or F and G; counterbalanced across participants) on a haptic tablet. They then tactually explored all four letters in normal or mirror-reversed form at different rotations (0°, 90°, 180°, and 270°) and indicated letter form (i.e., normal or mirror-reversed) by pressing one of two mouse buttons. We observed the typical effect of rotation angle on object discrimination performance (i.e., greater deviation from 0° resulted in worse performance) for trained letters, consistent with mental rotation of these haptically-rendered objects. We likewise observed generally slower and less accurate performance with mirror-reversed compared to prototypically oriented stimuli. Our findings extend existing research in multisensory object recognition by indicating that a new technology simulating active haptic feedback can support the generation and spatial manipulation of mental representations of objects. Thus, such haptic tablets can offer a new avenue to mitigate visual impairments and train skills dependent on mental object-based representations and their spatial manipulation. |
format | Online Article Text |
id | pubmed-6427928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64279282019-03-29 Mental Rotation of Digitally-Rendered Haptic Objects Tivadar, Ruxandra I. Rouillard, Tom Chappaz, Cédrick Knebel, Jean-François Turoman, Nora Anaflous, Fatima Roche, Jean Matusz, Pawel J. Murray, Micah M. Front Integr Neurosci Neuroscience Sensory substitution is an effective means to rehabilitate many visual functions after visual impairment or blindness. Tactile information, for example, is particularly useful for functions such as reading, mental rotation, shape recognition, or exploration of space. Extant haptic technologies typically rely on real physical objects or pneumatically driven renderings and thus provide a limited library of stimuli to users. New developments in digital haptic technologies now make it possible to actively simulate an unprecedented range of tactile sensations. We provide a proof-of-concept for a new type of technology (hereafter haptic tablet) that renders haptic feedback by modulating the friction of a flat screen through ultrasonic vibrations of varying shapes to create the sensation of texture when the screen is actively explored. We reasoned that participants should be able to create mental representations of letters presented in normal and mirror-reversed haptic form without the use of any visual information and to manipulate such representations in a mental rotation task. Healthy sighted, blindfolded volunteers were trained to discriminate between two letters (either L and P, or F and G; counterbalanced across participants) on a haptic tablet. They then tactually explored all four letters in normal or mirror-reversed form at different rotations (0°, 90°, 180°, and 270°) and indicated letter form (i.e., normal or mirror-reversed) by pressing one of two mouse buttons. We observed the typical effect of rotation angle on object discrimination performance (i.e., greater deviation from 0° resulted in worse performance) for trained letters, consistent with mental rotation of these haptically-rendered objects. We likewise observed generally slower and less accurate performance with mirror-reversed compared to prototypically oriented stimuli. Our findings extend existing research in multisensory object recognition by indicating that a new technology simulating active haptic feedback can support the generation and spatial manipulation of mental representations of objects. Thus, such haptic tablets can offer a new avenue to mitigate visual impairments and train skills dependent on mental object-based representations and their spatial manipulation. Frontiers Media S.A. 2019-03-14 /pmc/articles/PMC6427928/ /pubmed/30930756 http://dx.doi.org/10.3389/fnint.2019.00007 Text en Copyright © 2019 Tivadar, Rouillard, Chappaz, Knebel, Turoman, Anaflous, Roche, Matusz and Murray. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Tivadar, Ruxandra I. Rouillard, Tom Chappaz, Cédrick Knebel, Jean-François Turoman, Nora Anaflous, Fatima Roche, Jean Matusz, Pawel J. Murray, Micah M. Mental Rotation of Digitally-Rendered Haptic Objects |
title | Mental Rotation of Digitally-Rendered Haptic Objects |
title_full | Mental Rotation of Digitally-Rendered Haptic Objects |
title_fullStr | Mental Rotation of Digitally-Rendered Haptic Objects |
title_full_unstemmed | Mental Rotation of Digitally-Rendered Haptic Objects |
title_short | Mental Rotation of Digitally-Rendered Haptic Objects |
title_sort | mental rotation of digitally-rendered haptic objects |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427928/ https://www.ncbi.nlm.nih.gov/pubmed/30930756 http://dx.doi.org/10.3389/fnint.2019.00007 |
work_keys_str_mv | AT tivadarruxandrai mentalrotationofdigitallyrenderedhapticobjects AT rouillardtom mentalrotationofdigitallyrenderedhapticobjects AT chappazcedrick mentalrotationofdigitallyrenderedhapticobjects AT knebeljeanfrancois mentalrotationofdigitallyrenderedhapticobjects AT turomannora mentalrotationofdigitallyrenderedhapticobjects AT anaflousfatima mentalrotationofdigitallyrenderedhapticobjects AT rochejean mentalrotationofdigitallyrenderedhapticobjects AT matuszpawelj mentalrotationofdigitallyrenderedhapticobjects AT murraymicahm mentalrotationofdigitallyrenderedhapticobjects |