Cargando…
Age-dependent co-dependency structure of biomarkers in the general population of the United States
Phenotypic biomarkers (e.g. cholesterol, weight, and glucose) are important to diagnose and treat diseases associated with aging. However, while many biomarkers are co-dependent (e.g. glycohemoglobin and glucose), it is generally unknown how age influences their co-dependence. In the following, we a...
Autores principales: | Le Goallec, Alan, Patel, Chirag J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428110/ https://www.ncbi.nlm.nih.gov/pubmed/30822279 http://dx.doi.org/10.18632/aging.101842 |
Ejemplares similares
-
Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images
por: Le Goallec, Alan, et al.
Publicado: (2022) -
Machine learning approaches to predict age from accelerometer records of physical activity at biobank scale
por: Le Goallec, Alan, et al.
Publicado: (2023) -
Characterising the relationships between physiological indicators and all-cause mortality (NHANES): a population-based cohort study
por: Nguyen, Vy Kim, et al.
Publicado: (2021) -
Deep biomarkers of aging are population-dependent
por: Cohen, Alan A., et al.
Publicado: (2016) -
A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type
por: Le Goallec, Alan, et al.
Publicado: (2020)