Cargando…
Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes
Developing a solution-processible blue thermally activated delayed fluorescence (TADF) emitter for hybrid white organic light emitting diodes (WOLEDs) is still a challenge. In this work, two TADF blue emitters are designed and synthesized to explore a common strategy to qualify the small molecular T...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428138/ https://www.ncbi.nlm.nih.gov/pubmed/30996887 http://dx.doi.org/10.1039/c8sc05456h |
_version_ | 1783405359036104704 |
---|---|
author | Ban, Xinxin Chen, Feng Liu, Yan Pan, Jie Zhu, Aiyun Jiang, Wei Sun, Yueming |
author_facet | Ban, Xinxin Chen, Feng Liu, Yan Pan, Jie Zhu, Aiyun Jiang, Wei Sun, Yueming |
author_sort | Ban, Xinxin |
collection | PubMed |
description | Developing a solution-processible blue thermally activated delayed fluorescence (TADF) emitter for hybrid white organic light emitting diodes (WOLEDs) is still a challenge. In this work, two TADF blue emitters are designed and synthesized to explore a common strategy to qualify the small molecular TADF material as a solution-processible blue host. Systematic studies find that the molecular encapsulation by introducing unconjugated carbazoles as steric shields not only keeps the intrinsic TADF feature unchanged, but also effectively suppress the intermolecular interaction induced exciton quenching, which makes the material more efficient for solution-processing. The optimized solution-processed hybrid WOLEDs based on the encapsulated TADF blue host realized a highly efficient device performance with a maximum current efficiency (CE), power efficiency (PE) and external quantum efficiency (EQE) of 45.6 cd A(–1), 40.9 lm W(–1) and 17.0%, respectively, which are three times higher in device efficiency and twenty times higher in device lifetime than the corresponding device with an unencapsulated TADF blue host. Furthermore, the obtained device exhibits a high electroluminescence (EL) above 20 000 cd m(–2) and a stable EL spectrum with nearly unchanged Commission International de L’Eclairage (CIE) coordinate at a wide range of applied voltages. These results clearly demonstrate that the molecular encapsulation of the TADF blue host is a superior and promising strategy to achieve high performance and color stable solution-processed hybrid WOLEDs. |
format | Online Article Text |
id | pubmed-6428138 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-64281382019-04-17 Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes Ban, Xinxin Chen, Feng Liu, Yan Pan, Jie Zhu, Aiyun Jiang, Wei Sun, Yueming Chem Sci Chemistry Developing a solution-processible blue thermally activated delayed fluorescence (TADF) emitter for hybrid white organic light emitting diodes (WOLEDs) is still a challenge. In this work, two TADF blue emitters are designed and synthesized to explore a common strategy to qualify the small molecular TADF material as a solution-processible blue host. Systematic studies find that the molecular encapsulation by introducing unconjugated carbazoles as steric shields not only keeps the intrinsic TADF feature unchanged, but also effectively suppress the intermolecular interaction induced exciton quenching, which makes the material more efficient for solution-processing. The optimized solution-processed hybrid WOLEDs based on the encapsulated TADF blue host realized a highly efficient device performance with a maximum current efficiency (CE), power efficiency (PE) and external quantum efficiency (EQE) of 45.6 cd A(–1), 40.9 lm W(–1) and 17.0%, respectively, which are three times higher in device efficiency and twenty times higher in device lifetime than the corresponding device with an unencapsulated TADF blue host. Furthermore, the obtained device exhibits a high electroluminescence (EL) above 20 000 cd m(–2) and a stable EL spectrum with nearly unchanged Commission International de L’Eclairage (CIE) coordinate at a wide range of applied voltages. These results clearly demonstrate that the molecular encapsulation of the TADF blue host is a superior and promising strategy to achieve high performance and color stable solution-processed hybrid WOLEDs. Royal Society of Chemistry 2019-01-15 /pmc/articles/PMC6428138/ /pubmed/30996887 http://dx.doi.org/10.1039/c8sc05456h Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Ban, Xinxin Chen, Feng Liu, Yan Pan, Jie Zhu, Aiyun Jiang, Wei Sun, Yueming Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes |
title | Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes
|
title_full | Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes
|
title_fullStr | Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes
|
title_full_unstemmed | Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes
|
title_short | Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes
|
title_sort | design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428138/ https://www.ncbi.nlm.nih.gov/pubmed/30996887 http://dx.doi.org/10.1039/c8sc05456h |
work_keys_str_mv | AT banxinxin designofefficientthermallyactivateddelayedfluorescencebluehostforhighperformancesolutionprocessedhybridwhiteorganiclightemittingdiodes AT chenfeng designofefficientthermallyactivateddelayedfluorescencebluehostforhighperformancesolutionprocessedhybridwhiteorganiclightemittingdiodes AT liuyan designofefficientthermallyactivateddelayedfluorescencebluehostforhighperformancesolutionprocessedhybridwhiteorganiclightemittingdiodes AT panjie designofefficientthermallyactivateddelayedfluorescencebluehostforhighperformancesolutionprocessedhybridwhiteorganiclightemittingdiodes AT zhuaiyun designofefficientthermallyactivateddelayedfluorescencebluehostforhighperformancesolutionprocessedhybridwhiteorganiclightemittingdiodes AT jiangwei designofefficientthermallyactivateddelayedfluorescencebluehostforhighperformancesolutionprocessedhybridwhiteorganiclightemittingdiodes AT sunyueming designofefficientthermallyactivateddelayedfluorescencebluehostforhighperformancesolutionprocessedhybridwhiteorganiclightemittingdiodes |