Cargando…
Constraint-based causal discovery with mixed data
We address the problem of constraint-based causal discovery with mixed data types, such as (but not limited to) continuous, binary, multinomial, and ordinal variables. We use likelihood-ratio tests based on appropriate regression models and show how to derive symmetric conditional independence tests...
Autores principales: | Tsagris, Michail, Borboudakis, Giorgos, Lagani, Vincenzo, Tsamardinos, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428307/ https://www.ncbi.nlm.nih.gov/pubmed/30957008 http://dx.doi.org/10.1007/s41060-018-0097-y |
Ejemplares similares
-
Feature selection for high-dimensional temporal data
por: Tsagris, Michail, et al.
Publicado: (2018) -
Just Add Data: automated predictive modeling for knowledge discovery and feature selection
por: Tsamardinos, Ioannis, et al.
Publicado: (2022) -
Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells
por: Triantafillou, Sofia, et al.
Publicado: (2017) -
Automated machine learning for genome wide association studies
por: Lakiotaki, Kleanthi, et al.
Publicado: (2023) -
Extending greedy feature selection algorithms to multiple solutions
por: Borboudakis, Giorgos, et al.
Publicado: (2021)