Cargando…
Rationality for isobaric automorphic representations: the CM-case
In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic repres...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/ https://www.ncbi.nlm.nih.gov/pubmed/30956357 http://dx.doi.org/10.1007/s00605-018-1188-5 |
Sumario: | In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations [Formula: see text] which are the isobaric sum of unitary cuspidal automorphic representations [Formula: see text] of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457–489, 2016; Int Math Res Not 2:334–372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553–637, 2005). |
---|