Cargando…

Rationality for isobaric automorphic representations: the CM-case

In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic repres...

Descripción completa

Detalles Bibliográficos
Autor principal: Grobner, Harald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/
https://www.ncbi.nlm.nih.gov/pubmed/30956357
http://dx.doi.org/10.1007/s00605-018-1188-5
_version_ 1783405393539497984
author Grobner, Harald
author_facet Grobner, Harald
author_sort Grobner, Harald
collection PubMed
description In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations [Formula: see text] which are the isobaric sum of unitary cuspidal automorphic representations [Formula: see text] of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457–489, 2016; Int Math Res Not 2:334–372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553–637, 2005).
format Online
Article
Text
id pubmed-6428343
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Vienna
record_format MEDLINE/PubMed
spelling pubmed-64283432019-04-05 Rationality for isobaric automorphic representations: the CM-case Grobner, Harald Mon Hefte Math Article In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations [Formula: see text] which are the isobaric sum of unitary cuspidal automorphic representations [Formula: see text] of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457–489, 2016; Int Math Res Not 2:334–372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553–637, 2005). Springer Vienna 2018-05-21 2018 /pmc/articles/PMC6428343/ /pubmed/30956357 http://dx.doi.org/10.1007/s00605-018-1188-5 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Grobner, Harald
Rationality for isobaric automorphic representations: the CM-case
title Rationality for isobaric automorphic representations: the CM-case
title_full Rationality for isobaric automorphic representations: the CM-case
title_fullStr Rationality for isobaric automorphic representations: the CM-case
title_full_unstemmed Rationality for isobaric automorphic representations: the CM-case
title_short Rationality for isobaric automorphic representations: the CM-case
title_sort rationality for isobaric automorphic representations: the cm-case
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/
https://www.ncbi.nlm.nih.gov/pubmed/30956357
http://dx.doi.org/10.1007/s00605-018-1188-5
work_keys_str_mv AT grobnerharald rationalityforisobaricautomorphicrepresentationsthecmcase