Cargando…
Rationality for isobaric automorphic representations: the CM-case
In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic repres...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/ https://www.ncbi.nlm.nih.gov/pubmed/30956357 http://dx.doi.org/10.1007/s00605-018-1188-5 |
_version_ | 1783405393539497984 |
---|---|
author | Grobner, Harald |
author_facet | Grobner, Harald |
author_sort | Grobner, Harald |
collection | PubMed |
description | In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations [Formula: see text] which are the isobaric sum of unitary cuspidal automorphic representations [Formula: see text] of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457–489, 2016; Int Math Res Not 2:334–372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553–637, 2005). |
format | Online Article Text |
id | pubmed-6428343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-64283432019-04-05 Rationality for isobaric automorphic representations: the CM-case Grobner, Harald Mon Hefte Math Article In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions [Formula: see text] (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations [Formula: see text] which are the isobaric sum of unitary cuspidal automorphic representations [Formula: see text] of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457–489, 2016; Int Math Res Not 2:334–372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553–637, 2005). Springer Vienna 2018-05-21 2018 /pmc/articles/PMC6428343/ /pubmed/30956357 http://dx.doi.org/10.1007/s00605-018-1188-5 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Grobner, Harald Rationality for isobaric automorphic representations: the CM-case |
title | Rationality for isobaric automorphic representations: the CM-case |
title_full | Rationality for isobaric automorphic representations: the CM-case |
title_fullStr | Rationality for isobaric automorphic representations: the CM-case |
title_full_unstemmed | Rationality for isobaric automorphic representations: the CM-case |
title_short | Rationality for isobaric automorphic representations: the CM-case |
title_sort | rationality for isobaric automorphic representations: the cm-case |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/ https://www.ncbi.nlm.nih.gov/pubmed/30956357 http://dx.doi.org/10.1007/s00605-018-1188-5 |
work_keys_str_mv | AT grobnerharald rationalityforisobaricautomorphicrepresentationsthecmcase |