Cargando…

Magnetic Helicity as a Predictor of the Solar Cycle

It is well known that the polar magnetic field is at its maximum during solar minima, and that the behaviour during this time acts as a strong predictor of the strength of the following solar cycle. This relationship relies on the action of differential rotation (the Omega effect) on the poloidal fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawkes, G., Berger, M. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428356/
https://www.ncbi.nlm.nih.gov/pubmed/30956362
http://dx.doi.org/10.1007/s11207-018-1332-3
Descripción
Sumario:It is well known that the polar magnetic field is at its maximum during solar minima, and that the behaviour during this time acts as a strong predictor of the strength of the following solar cycle. This relationship relies on the action of differential rotation (the Omega effect) on the poloidal field, which generates the toroidal flux observed in sunspots and active regions. We measure the helicity flux into both the northern and the southern hemispheres using a model that takes account of the Omega effect, which we apply to data sets covering a total of 60 years. We find that the helicity flux offers a strong prediction of solar activity up to five years in advance of the next solar cycle. We also hazard an early guess as to the strength of Solar Cycle 25, which we believe will be of similar amplitude and strength to Cycle 24.