Cargando…

Population genetic structure of Marbled Rockfish, Sebastiscusmarmoratus (Cuvier, 1829), in the northwestern Pacific Ocean

Abstract. Sebastiscusmarmoratus is an ovoviviparous fish widely distributed in the northwestern Pacific. To examine the gene flow and test larval dispersal strategy of S.marmoratus in Chinese and Japanese coastal waters, 421 specimens were collected from 22 localities across its natural distribution...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lu, Zhang, Xiumei, Li, Chunhou, Zhang, Hui, Yanagimoto, Takashi, Na Song, Gao, Tianxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pensoft Publishers 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428785/
https://www.ncbi.nlm.nih.gov/pubmed/30918446
http://dx.doi.org/10.3897/zookeys.830.30586
Descripción
Sumario:Abstract. Sebastiscusmarmoratus is an ovoviviparous fish widely distributed in the northwestern Pacific. To examine the gene flow and test larval dispersal strategy of S.marmoratus in Chinese and Japanese coastal waters, 421 specimens were collected from 22 localities across its natural distribution. A 458 base-pair fragment of the mitochondrial DNA (mtDNA) control region was sequenced to examine genetic diversity and population structure. One-hundred-six variable sites defined 166 haplotypes. The populations of S.marmoratus showed high haplotype diversity with a range from 0.8587 to 0.9996, indicating a high level of intrapopulation genetic diversity. Low non-significant genetic differentiation was estimated among populations except those of Hyogo, Behai, and Niiigata, which showed significant genetic differences from the other populations. The demographic history examined by neutrality tests, mismatch distribution analysis, and Bayesian skyline analysis suggested a sudden population expansion dating to the late Pleistocene. Recent population expansion in the last glacial period, wide dispersal of larvae by coastal currents, and the homogeneity of the environment may have important influences on the population genetic pattern. Knowledge of genetic diversity and genetic structure will be crucial to establish appropriate fishery management of S.marmoratus.