Cargando…

Chemical Vapor Deposition of Vertically Aligned Carbon Nanotube Arrays: Critical Effects of Oxide Buffer Layers

Vertically aligned carbon nanotubes (VACNTs) were synthesized on different oxide buffer layers using chemical vapor deposition (CVD). The growth of the VACNTs was mainly determined by three factors: the Ostwald ripening of catalyst nanoparticles, subsurface diffusion of Fe, and their activation ener...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Haohao, Yuan, Guangjie, Shan, Bo, Zhang, Xiaoxin, Ma, Hongping, Tian, Yingzhong, Lu, Hongliang, Liu, Johan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428882/
https://www.ncbi.nlm.nih.gov/pubmed/30900108
http://dx.doi.org/10.1186/s11671-019-2938-6
Descripción
Sumario:Vertically aligned carbon nanotubes (VACNTs) were synthesized on different oxide buffer layers using chemical vapor deposition (CVD). The growth of the VACNTs was mainly determined by three factors: the Ostwald ripening of catalyst nanoparticles, subsurface diffusion of Fe, and their activation energy for nucleation and initial growth. The surface roughness of buffer layers largely influenced the diameter and density of catalyst nanoparticles after annealing, which apparently affected the lifetime of the nanoparticles and the thickness of the prepared VACNTs. In addition, the growth of the VACNTs was also affected by the deposition temperature, and the lifetime of the catalyst nanoparticles apparently decreased when the deposition temperature was greater than 600 °C due to their serious Ostwald ripening. Furthermore, in addition to the number of catalyst nanoparticles, the density of the VACNTs was also largely dependent on their activation energy for nucleation and initial growth.