Cargando…
Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells
Deregulation of glycolysis is a common phenomenon in human non-small cell lung cancer (NSCLC). In the present study, we reported the natural compound, piperlongumine, has a profound anti-tumor effect on NSCLC via regulation of glycolysis. Piperlongumine suppressed the proliferation, colony formation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429016/ https://www.ncbi.nlm.nih.gov/pubmed/30906213 http://dx.doi.org/10.7150/ijbs.31749 |
_version_ | 1783405500689285120 |
---|---|
author | Zhou, Li Li, Ming Yu, Xinyou Gao, Feng Li, Wei |
author_facet | Zhou, Li Li, Ming Yu, Xinyou Gao, Feng Li, Wei |
author_sort | Zhou, Li |
collection | PubMed |
description | Deregulation of glycolysis is a common phenomenon in human non-small cell lung cancer (NSCLC). In the present study, we reported the natural compound, piperlongumine, has a profound anti-tumor effect on NSCLC via regulation of glycolysis. Piperlongumine suppressed the proliferation, colony formation and HK2-mediated glycolysis in NSCLC cells. We demonstrated that exposure to piperlongumine disrupted the interaction between HK2 and VDAC1, induced the activation of the intrinsic apoptosis signaling pathway. Moreover, our results revealed that piperlongumine down-regulated the Akt signaling, exogenous overexpression of constitutively activated Akt1 in HCC827 and H1975 cells significantly rescued piperlongumine-induced glycolysis suppression and apoptosis. The xenograft mouse model data demonstrated the pivotal role of suppression of Akt activation and HK2-mediated glycolysis in mediating the in vivo antitumor effects of piperlongumine. The expression of HK2 was higher in malignant NSCLC tissues than that of the paired adjacent tissues, and was positively correlated with poor survival time. Our results suggest that HK2 could be used as a potential predictor of survival and targeting HK2 appears to be a new approach for clinical NSCLC prevention or treatment. |
format | Online Article Text |
id | pubmed-6429016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-64290162019-03-22 Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells Zhou, Li Li, Ming Yu, Xinyou Gao, Feng Li, Wei Int J Biol Sci Research Paper Deregulation of glycolysis is a common phenomenon in human non-small cell lung cancer (NSCLC). In the present study, we reported the natural compound, piperlongumine, has a profound anti-tumor effect on NSCLC via regulation of glycolysis. Piperlongumine suppressed the proliferation, colony formation and HK2-mediated glycolysis in NSCLC cells. We demonstrated that exposure to piperlongumine disrupted the interaction between HK2 and VDAC1, induced the activation of the intrinsic apoptosis signaling pathway. Moreover, our results revealed that piperlongumine down-regulated the Akt signaling, exogenous overexpression of constitutively activated Akt1 in HCC827 and H1975 cells significantly rescued piperlongumine-induced glycolysis suppression and apoptosis. The xenograft mouse model data demonstrated the pivotal role of suppression of Akt activation and HK2-mediated glycolysis in mediating the in vivo antitumor effects of piperlongumine. The expression of HK2 was higher in malignant NSCLC tissues than that of the paired adjacent tissues, and was positively correlated with poor survival time. Our results suggest that HK2 could be used as a potential predictor of survival and targeting HK2 appears to be a new approach for clinical NSCLC prevention or treatment. Ivyspring International Publisher 2019-03-01 /pmc/articles/PMC6429016/ /pubmed/30906213 http://dx.doi.org/10.7150/ijbs.31749 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Zhou, Li Li, Ming Yu, Xinyou Gao, Feng Li, Wei Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells |
title | Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells |
title_full | Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells |
title_fullStr | Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells |
title_full_unstemmed | Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells |
title_short | Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells |
title_sort | repression of hexokinases ii-mediated glycolysis contributes to piperlongumine-induced tumor suppression in non-small cell lung cancer cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429016/ https://www.ncbi.nlm.nih.gov/pubmed/30906213 http://dx.doi.org/10.7150/ijbs.31749 |
work_keys_str_mv | AT zhouli repressionofhexokinasesiimediatedglycolysiscontributestopiperlongumineinducedtumorsuppressioninnonsmallcelllungcancercells AT liming repressionofhexokinasesiimediatedglycolysiscontributestopiperlongumineinducedtumorsuppressioninnonsmallcelllungcancercells AT yuxinyou repressionofhexokinasesiimediatedglycolysiscontributestopiperlongumineinducedtumorsuppressioninnonsmallcelllungcancercells AT gaofeng repressionofhexokinasesiimediatedglycolysiscontributestopiperlongumineinducedtumorsuppressioninnonsmallcelllungcancercells AT liwei repressionofhexokinasesiimediatedglycolysiscontributestopiperlongumineinducedtumorsuppressioninnonsmallcelllungcancercells |