Cargando…

A structural equation model for imaging genetics using spatial transcriptomics

Imaging genetics deals with relationships between genetic variation and imaging variables, often in a disease context. The complex relationships between brain volumes and genetic variants have been explored with both dimension reduction methods and model-based approaches. However, these models usual...

Descripción completa

Detalles Bibliográficos
Autores principales: Huisman, Sjoerd M. H., Mahfouz, Ahmed, Batmanghelich, Nematollah K., Lelieveldt, Boudewijn P. F., Reinders, Marcel J. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429169/
https://www.ncbi.nlm.nih.gov/pubmed/30390165
http://dx.doi.org/10.1186/s40708-018-0091-0
_version_ 1783405535413927936
author Huisman, Sjoerd M. H.
Mahfouz, Ahmed
Batmanghelich, Nematollah K.
Lelieveldt, Boudewijn P. F.
Reinders, Marcel J. T.
author_facet Huisman, Sjoerd M. H.
Mahfouz, Ahmed
Batmanghelich, Nematollah K.
Lelieveldt, Boudewijn P. F.
Reinders, Marcel J. T.
author_sort Huisman, Sjoerd M. H.
collection PubMed
description Imaging genetics deals with relationships between genetic variation and imaging variables, often in a disease context. The complex relationships between brain volumes and genetic variants have been explored with both dimension reduction methods and model-based approaches. However, these models usually do not make use of the extensive knowledge of the spatio-anatomical patterns of gene activity. We present a method for integrating genetic markers (single nucleotide polymorphisms) and imaging features, which is based on a causal model and, at the same time, uses the power of dimension reduction. We use structural equation models to find latent variables that explain brain volume changes in a disease context, and which are in turn affected by genetic variants. We make use of publicly available spatial transcriptome data from the Allen Human Brain Atlas to specify the model structure, which reduces noise and improves interpretability. The model is tested in a simulation setting and applied on a case study of the Alzheimer’s Disease Neuroimaging Initiative. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40708-018-0091-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6429169
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-64291692019-03-22 A structural equation model for imaging genetics using spatial transcriptomics Huisman, Sjoerd M. H. Mahfouz, Ahmed Batmanghelich, Nematollah K. Lelieveldt, Boudewijn P. F. Reinders, Marcel J. T. Brain Inform Original Research Imaging genetics deals with relationships between genetic variation and imaging variables, often in a disease context. The complex relationships between brain volumes and genetic variants have been explored with both dimension reduction methods and model-based approaches. However, these models usually do not make use of the extensive knowledge of the spatio-anatomical patterns of gene activity. We present a method for integrating genetic markers (single nucleotide polymorphisms) and imaging features, which is based on a causal model and, at the same time, uses the power of dimension reduction. We use structural equation models to find latent variables that explain brain volume changes in a disease context, and which are in turn affected by genetic variants. We make use of publicly available spatial transcriptome data from the Allen Human Brain Atlas to specify the model structure, which reduces noise and improves interpretability. The model is tested in a simulation setting and applied on a case study of the Alzheimer’s Disease Neuroimaging Initiative. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40708-018-0091-0) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2018-11-02 /pmc/articles/PMC6429169/ /pubmed/30390165 http://dx.doi.org/10.1186/s40708-018-0091-0 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Research
Huisman, Sjoerd M. H.
Mahfouz, Ahmed
Batmanghelich, Nematollah K.
Lelieveldt, Boudewijn P. F.
Reinders, Marcel J. T.
A structural equation model for imaging genetics using spatial transcriptomics
title A structural equation model for imaging genetics using spatial transcriptomics
title_full A structural equation model for imaging genetics using spatial transcriptomics
title_fullStr A structural equation model for imaging genetics using spatial transcriptomics
title_full_unstemmed A structural equation model for imaging genetics using spatial transcriptomics
title_short A structural equation model for imaging genetics using spatial transcriptomics
title_sort structural equation model for imaging genetics using spatial transcriptomics
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429169/
https://www.ncbi.nlm.nih.gov/pubmed/30390165
http://dx.doi.org/10.1186/s40708-018-0091-0
work_keys_str_mv AT huismansjoerdmh astructuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT mahfouzahmed astructuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT batmanghelichnematollahk astructuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT lelieveldtboudewijnpf astructuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT reindersmarceljt astructuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT astructuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT huismansjoerdmh structuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT mahfouzahmed structuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT batmanghelichnematollahk structuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT lelieveldtboudewijnpf structuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT reindersmarceljt structuralequationmodelforimaginggeneticsusingspatialtranscriptomics
AT structuralequationmodelforimaginggeneticsusingspatialtranscriptomics