Cargando…
Enantiomeric Tartaric Acid Production Using cis-Epoxysuccinate Hydrolase: History and Perspectives
Tartaric acid is an important chiral chemical building block with broad industrial and scientific applications. The enantioselective synthesis of l(+)- and d(−)-tartaric acids has been successfully achieved using bacteria presenting cis-epoxysuccinate hydrolase (CESH) activity, while the catalytic m...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429283/ https://www.ncbi.nlm.nih.gov/pubmed/30841503 http://dx.doi.org/10.3390/molecules24050903 |
Sumario: | Tartaric acid is an important chiral chemical building block with broad industrial and scientific applications. The enantioselective synthesis of l(+)- and d(−)-tartaric acids has been successfully achieved using bacteria presenting cis-epoxysuccinate hydrolase (CESH) activity, while the catalytic mechanisms of CESHs were not elucidated clearly until very recently. As biocatalysts, CESHs are unique epoxide hydrolases because their substrate is a small, mirror-symmetric, highly hydrophilic molecule, and their products show very high enantiomeric purity with nearly 100% enantiomeric excess. In this paper, we review over forty years of the history, process and mechanism studies of CESHs as well as our perspective on the future research and applications of CESH in enantiomeric tartaric acid production. |
---|