Cargando…

Multiple Targets of 3-Dehydroxyceanothetric Acid 2-Methyl Ester to Protect Against Cisplatin-Induced Cytotoxicity in Kidney Epithelial LLC-PK1 Cells

Chronic exposure to cisplatin, a potent anticancer drug, causes irreversible kidney damage. In this study, we investigated the protective effect and mechanism of nine lupane- and ceanothane-type triterpenoids isolated from jujube (Ziziphus jujuba Mill., Rhamnaceae) on cisplatin-induced damage to kid...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dahae, Kim, Ki Hyun, Lee, Won Yung, Kim, Chang-Eop, Sung, Sang Hyun, Kang, Kyo Bin, Kang, Ki Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429383/
https://www.ncbi.nlm.nih.gov/pubmed/30832267
http://dx.doi.org/10.3390/molecules24050878
Descripción
Sumario:Chronic exposure to cisplatin, a potent anticancer drug, causes irreversible kidney damage. In this study, we investigated the protective effect and mechanism of nine lupane- and ceanothane-type triterpenoids isolated from jujube (Ziziphus jujuba Mill., Rhamnaceae) on cisplatin-induced damage to kidney epithelial LLC-PK1 cells via mitogen-activated protein kinase (MAPK) and apoptosis pathways. Cisplatin-induced LLC-PK1 cell death was most significantly reduced following treatment with 3-dehydroxyceanothetric acid 2-methyl ester (3DC2ME). Additionally, apoptotic cell death was significantly reduced. Expression of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was markedly suppressed by 3DC2ME, indicating inhibition of the MAPK pathway. Treatment with 3DC2ME also significantly reduced expression of active caspase-8 and -3, Bcl-2-associated X protein (Bax), and B cell lymphoma 2 (Bcl-2), indicating the inhibition of apoptosis pathways in the kidneys. We also applied the network pharmacological analysis and identified multiple targets of 3DC2ME related to MAPK signaling pathway and apoptosis.