Cargando…

Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders

We examined maximal oxygen consumption responses following exercise training to demonstrate the limitations associated with threshold‐based dichotomous classification of responders and non‐responders and proposed alternative methods for classification. Specifically, we: 1) calculated individual prob...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonafiglia, Jacob T., Nelms, Matthew W., Preobrazenski, Nicholas, LeBlanc, Camille, Robins, Lauren, Lu, Simo, Lithopoulos, Alexander, Walsh, Jeremy J., Gurd, Brendon J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429972/
https://www.ncbi.nlm.nih.gov/pubmed/30488594
http://dx.doi.org/10.14814/phy2.13928
_version_ 1783405701140316160
author Bonafiglia, Jacob T.
Nelms, Matthew W.
Preobrazenski, Nicholas
LeBlanc, Camille
Robins, Lauren
Lu, Simo
Lithopoulos, Alexander
Walsh, Jeremy J.
Gurd, Brendon J.
author_facet Bonafiglia, Jacob T.
Nelms, Matthew W.
Preobrazenski, Nicholas
LeBlanc, Camille
Robins, Lauren
Lu, Simo
Lithopoulos, Alexander
Walsh, Jeremy J.
Gurd, Brendon J.
author_sort Bonafiglia, Jacob T.
collection PubMed
description We examined maximal oxygen consumption responses following exercise training to demonstrate the limitations associated with threshold‐based dichotomous classification of responders and non‐responders and proposed alternative methods for classification. Specifically, we: 1) calculated individual probabilities of response, and 2) classified individuals using response confidence intervals (CI) and reference points of zero and a smallest worthwhile change of 0.5 METs. Our findings support the use of individual probabilities and individual CIs to improve the accuracy in non‐response classification.
format Online
Article
Text
id pubmed-6429972
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-64299722019-04-04 Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders Bonafiglia, Jacob T. Nelms, Matthew W. Preobrazenski, Nicholas LeBlanc, Camille Robins, Lauren Lu, Simo Lithopoulos, Alexander Walsh, Jeremy J. Gurd, Brendon J. Physiol Rep Original Research We examined maximal oxygen consumption responses following exercise training to demonstrate the limitations associated with threshold‐based dichotomous classification of responders and non‐responders and proposed alternative methods for classification. Specifically, we: 1) calculated individual probabilities of response, and 2) classified individuals using response confidence intervals (CI) and reference points of zero and a smallest worthwhile change of 0.5 METs. Our findings support the use of individual probabilities and individual CIs to improve the accuracy in non‐response classification. John Wiley and Sons Inc. 2018-11-22 /pmc/articles/PMC6429972/ /pubmed/30488594 http://dx.doi.org/10.14814/phy2.13928 Text en © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Bonafiglia, Jacob T.
Nelms, Matthew W.
Preobrazenski, Nicholas
LeBlanc, Camille
Robins, Lauren
Lu, Simo
Lithopoulos, Alexander
Walsh, Jeremy J.
Gurd, Brendon J.
Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
title Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
title_full Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
title_fullStr Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
title_full_unstemmed Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
title_short Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
title_sort moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429972/
https://www.ncbi.nlm.nih.gov/pubmed/30488594
http://dx.doi.org/10.14814/phy2.13928
work_keys_str_mv AT bonafigliajacobt movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT nelmsmattheww movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT preobrazenskinicholas movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT leblanccamille movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT robinslauren movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT lusimo movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT lithopoulosalexander movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT walshjeremyj movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders
AT gurdbrendonj movingbeyondthresholdbaseddichotomousclassificationtoimprovetheaccuracyinclassifyingnonresponders