Cargando…
Models and Machines: How Deep Learning Will Take Clinical Pharmacology to the Next Level
Recent advances in machine learning (ML) have led to enthusiasm about its use throughout the biopharmaceutical industry. The ML methods can be applied to a wide range of problems and have the potential to revolutionize aspects of drug development. The incorporation of ML in modeling and simulation (...
Autores principales: | Hutchinson, Lucy, Steiert, Bernhard, Soubret, Antoine, Wagg, Jonathan, Phipps, Alex, Peck, Richard, Charoin, Jean‐Eric, Ribba, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430152/ https://www.ncbi.nlm.nih.gov/pubmed/30549240 http://dx.doi.org/10.1002/psp4.12377 |
Ejemplares similares
-
Challenges and Opportunities for Quantitative Clinical Pharmacology in Cancer Immunotherapy: Something Old, Something New, Something Borrowed, and Something Blue
por: Stroh, M, et al.
Publicado: (2015) -
Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation
por: Ribba, B, et al.
Publicado: (2017) -
The potential and pitfalls of artificial intelligence in clinical pharmacology
por: Johnson, Martin, et al.
Publicado: (2023) -
Modeling Longitudinal Preclinical Tumor Size Data to Identify Transient Dynamics in Tumor Response to Antiangiogenic Drugs
por: Hutchinson, LG, et al.
Publicado: (2016) -
Get that next job—how to break out of the postdoc trap
por: Klaue, Yvonne
Publicado: (2015)