Cargando…

Attention: The Messy Reality

The human capability to attend has been both considered as easy and as impossible to understand by philosophers and scientists through the centuries. Much has been written by brain, cognitive, and philosophical scientists trying to explain attention as it applies to sensory and reasoning processes,...

Descripción completa

Detalles Bibliográficos
Autor principal: Tsotsos, John K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: YJBM 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430176/
https://www.ncbi.nlm.nih.gov/pubmed/30923480
Descripción
Sumario:The human capability to attend has been both considered as easy and as impossible to understand by philosophers and scientists through the centuries. Much has been written by brain, cognitive, and philosophical scientists trying to explain attention as it applies to sensory and reasoning processes, let alone consciousness. It has been only in the last few decades that computational scientists have entered the picture adding a new language with which to express attentional behavior and function. This new perspective has produced some progress to the centuries-old goal, but there is still far to go. Although a central belief in many scientific disciplines has been to seek a unifying explanatory principle for natural observations, it may be that we need to put this aside as it applies to attention and accept the fact that attention is really an integrated set of mechanisms, too messy to cleanly and parsimoniously express with a single principle. These mechanisms are claimed to be critical to enable functional generalization of brain processes and thus an integrative perspective is important. Here we present first steps towards a theoretical and algorithmic view on how the many different attentional mechanisms may be deployed, coordinated, synchronized, and effectively utilized. A hierarchy of dynamically defined closed-loop control processes is proposed, each with its own optimization objective, which is extensible to multiple layers. Although mostly speculative, simulation and experimental work support important components.