Cargando…

LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF‐κB/NLRP3 inflammasome pathway

OBJECTIVES: The correlations between long non‐coding RNAs (lncRNAs) and diverse mammal diseases have been clarified by many researches, but the cognition about bovine mastitis‐related lncRNAs remains limited. This study aimed to investigate the potential role of lncRNA X‐inactive specific transcript...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Mengru, Pei, Yifei, Wang, Xixi, Feng, Jiaxin, Zhang, Yong, Gao, Ming‐Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430464/
https://www.ncbi.nlm.nih.gov/pubmed/30362186
http://dx.doi.org/10.1111/cpr.12525
Descripción
Sumario:OBJECTIVES: The correlations between long non‐coding RNAs (lncRNAs) and diverse mammal diseases have been clarified by many researches, but the cognition about bovine mastitis‐related lncRNAs remains limited. This study aimed to investigate the potential role of lncRNA X‐inactive specific transcript (XIST) in the inflammatory response of bovine mammary epithelial cells. MATERIALS AND METHODS: Two inflammatory bovine mammary alveolar cell‐T (MAC‐T) models were established by infecting the cells with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The expressions of pro‐inflammatory cytokines were measured, and the proliferation, viability and apoptosis of the inflammatory cells were evaluated after XIST was knocked down by an siRNA. The relationship among XIST, NF‐κB pathway and NOD‐like receptor protein 3 (NLRP3) inflammasome was investigated using an inhibitor of NF‐κB signal pathway. RESULTS: The expression of XIST was abnormally increased in bovine mastitic tissues and inflammatory MAC‐T cells. Silencing of XIST significantly increased the expression of E. coli or S. aureus‐induced pro‐inflammatory cytokines. Additionally, knockdown of XIST could inhibit cell proliferation, suppress cell viability and promote cell apoptosis under inflammatory conditions. Furthermore, XIST inhibited E. coli or S. aureus‐induced NF‐κB phosphorylation and the production of NLRP3 inflammasome. CONCLUSIONS: The expression of XIST was promoted by activated NF‐κB pathway and, in turn, XIST generated a negative feedback loop to regulate NF‐κB/NLRP3 inflammasome pathway for mediating the process of inflammation.