Cargando…
Electronic structure at coarse-grained resolutions from supervised machine learning
Computational studies aimed at understanding conformationally dependent electronic structure in soft materials require a combination of classical and quantum-mechanical simulations, for which the sampling of conformational space can be particularly demanding. Coarse-grained (CG) models provide a mea...
Autores principales: | Jackson, Nicholas E., Bowen, Alec S., Antony, Lucas W., Webb, Michael A., Vishwanath, Venkatram, de Pablo, Juan J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430626/ https://www.ncbi.nlm.nih.gov/pubmed/30915396 http://dx.doi.org/10.1126/sciadv.aav1190 |
Ejemplares similares
-
Targeted sequence design within the coarse-grained polymer genome
por: Webb, Michael A., et al.
Publicado: (2020) -
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
Machine learning coarse grained models for water
por: Chan, Henry, et al.
Publicado: (2019) -
Machine Learning of Coarse-Grained Molecular Dynamics
Force Fields
por: Wang, Jiang, et al.
Publicado: (2019) -
Coarse-grained versus fully atomistic machine learning for zeolitic imidazolate frameworks
por: Faure Beaulieu, Zoé, et al.
Publicado: (2023)