Cargando…

Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris

Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. EEU is performed by prevalent phototrophic bacterial genera, but the electron transfer pathways and the physiological electron sinks are poorly understood....

Descripción completa

Detalles Bibliográficos
Autores principales: Guzman, Michael S., Rengasamy, Karthikeyan, Binkley, Michael M., Jones, Clive, Ranaivoarisoa, Tahina Onina, Singh, Rajesh, Fike, David A., Meacham, J. Mark, Bose, Arpita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430793/
https://www.ncbi.nlm.nih.gov/pubmed/30902976
http://dx.doi.org/10.1038/s41467-019-09377-6
_version_ 1783405818186563584
author Guzman, Michael S.
Rengasamy, Karthikeyan
Binkley, Michael M.
Jones, Clive
Ranaivoarisoa, Tahina Onina
Singh, Rajesh
Fike, David A.
Meacham, J. Mark
Bose, Arpita
author_facet Guzman, Michael S.
Rengasamy, Karthikeyan
Binkley, Michael M.
Jones, Clive
Ranaivoarisoa, Tahina Onina
Singh, Rajesh
Fike, David A.
Meacham, J. Mark
Bose, Arpita
author_sort Guzman, Michael S.
collection PubMed
description Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. EEU is performed by prevalent phototrophic bacterial genera, but the electron transfer pathways and the physiological electron sinks are poorly understood. Here we show that electrons enter the photosynthetic electron transport chain during EEU in the phototrophic bacterium Rhodopseudomonas palustris TIE-1. Cathodic electron flow is also correlated with a highly reducing intracellular redox environment. We show that reducing equivalents are used for carbon dioxide (CO(2)) fixation, which is the primary electron sink. Deletion of the genes encoding ruBisCO (the CO(2)-fixing enzyme of the Calvin-Benson-Bassham cycle) leads to a 90% reduction in EEU. This work shows that phototrophs can directly use solid-phase conductive substances for electron transfer, energy transduction, and CO(2) fixation.
format Online
Article
Text
id pubmed-6430793
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64307932019-03-25 Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris Guzman, Michael S. Rengasamy, Karthikeyan Binkley, Michael M. Jones, Clive Ranaivoarisoa, Tahina Onina Singh, Rajesh Fike, David A. Meacham, J. Mark Bose, Arpita Nat Commun Article Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. EEU is performed by prevalent phototrophic bacterial genera, but the electron transfer pathways and the physiological electron sinks are poorly understood. Here we show that electrons enter the photosynthetic electron transport chain during EEU in the phototrophic bacterium Rhodopseudomonas palustris TIE-1. Cathodic electron flow is also correlated with a highly reducing intracellular redox environment. We show that reducing equivalents are used for carbon dioxide (CO(2)) fixation, which is the primary electron sink. Deletion of the genes encoding ruBisCO (the CO(2)-fixing enzyme of the Calvin-Benson-Bassham cycle) leads to a 90% reduction in EEU. This work shows that phototrophs can directly use solid-phase conductive substances for electron transfer, energy transduction, and CO(2) fixation. Nature Publishing Group UK 2019-03-22 /pmc/articles/PMC6430793/ /pubmed/30902976 http://dx.doi.org/10.1038/s41467-019-09377-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Guzman, Michael S.
Rengasamy, Karthikeyan
Binkley, Michael M.
Jones, Clive
Ranaivoarisoa, Tahina Onina
Singh, Rajesh
Fike, David A.
Meacham, J. Mark
Bose, Arpita
Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris
title Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris
title_full Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris
title_fullStr Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris
title_full_unstemmed Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris
title_short Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris
title_sort phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium rhodopseudomonas palustris
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430793/
https://www.ncbi.nlm.nih.gov/pubmed/30902976
http://dx.doi.org/10.1038/s41467-019-09377-6
work_keys_str_mv AT guzmanmichaels phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT rengasamykarthikeyan phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT binkleymichaelm phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT jonesclive phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT ranaivoarisoatahinaonina phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT singhrajesh phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT fikedavida phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT meachamjmark phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris
AT bosearpita phototrophicextracellularelectronuptakeislinkedtocarbondioxidefixationinthebacteriumrhodopseudomonaspalustris