Cargando…

LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p

BACKGROUND: Small nucleolar RNA host gene 7 (SNHG7) is a novel identified oncogenic gene in tumorigenesis. However, the role that SNHG7 plays in pancreatic cancer (PC) remains unclear. In this study, we aimed to investigate the functional effects of SNHG7 on PC and the possible mechanism. METHODS: T...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Dongfeng, Fan, Juanjuan, Ma, Yang, Zhou, Yiran, Qin, Kai, Shi, Minmin, Yang, Jingrui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431029/
https://www.ncbi.nlm.nih.gov/pubmed/30949340
http://dx.doi.org/10.1186/s13578-019-0290-2
Descripción
Sumario:BACKGROUND: Small nucleolar RNA host gene 7 (SNHG7) is a novel identified oncogenic gene in tumorigenesis. However, the role that SNHG7 plays in pancreatic cancer (PC) remains unclear. In this study, we aimed to investigate the functional effects of SNHG7 on PC and the possible mechanism. METHODS: The expression levels of SNHG7 in tissues and cell lines were measured by RT-qPCR. Cell viability, apoptosis, migration and invasion were examined to explore the function of SNHG7 on PC. Bioinformatics methods were used to predict the target genes. The mechanism was further investigated by transfection with specific si-RNA, miRNA mimics or miRNA inhibitor. Tumor xenograft was carried out to verify the effects of SNHG7 in vivo. RESULTS: We found that SNHG7 was overexpressed in both PC tissues and cell lines. High expression level of SNHG7 was correlated with the poor prognosis. SNHG7 knockdown inhibited the proliferation, migration and invasion of PC cells. Moreover, SNHG7 was found to regulate the expression of ID4 via sponging miR-342-3p. Additionally, this finding was supported by in vivo experiments. CONCLUSIONS: LncRNA SNHG7 was overexpressed in PC tissues, and knockdown of SNHG7 suppressed PC cell proliferation, migration and invasion via miR-342-3p/ID4 axis. The results indicated that SNHG7 as a potential target for clinical treatment of PC.