Cargando…
Optimal errors and phase transitions in high-dimensional generalized linear models
Generalized linear models (GLMs) are used in high-dimensional machine learning, statistics, communications, and signal processing. In this paper we analyze GLMs when the data matrix is random, as relevant in problems such as compressed sensing, error-correcting codes, or benchmark models in neural n...
Autores principales: | Barbier, Jean, Krzakala, Florent, Macris, Nicolas, Miolane, Léo, Zdeborová, Lenka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431156/ https://www.ncbi.nlm.nih.gov/pubmed/30824595 http://dx.doi.org/10.1073/pnas.1802705116 |
Ejemplares similares
-
Distinct differences in the nanoscale behaviors of the twist–bend liquid crystal phase of a flexible linear trimer and homologous dimer
por: Tuchband, Michael R., et al.
Publicado: (2019) -
Adaptive, locally linear models of complex dynamics
por: Costa, Antonio C., et al.
Publicado: (2019) -
Elimination of the error signal in the superior colliculus impairs saccade motor learning
por: Kojima, Yoshiko, et al.
Publicado: (2018) -
Phosphorylation of CENP-C by Aurora B facilitates kinetochore attachment error correction in mitosis
por: Zhou, Xing, et al.
Publicado: (2017) -
Evolutionary dynamics with game transitions
por: Su, Qi, et al.
Publicado: (2019)