Cargando…
Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes
Many microbes acquire metabolites in a “feeding” process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotroph...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431176/ https://www.ncbi.nlm.nih.gov/pubmed/30842288 http://dx.doi.org/10.1073/pnas.1815994116 |
_version_ | 1783405895049281536 |
---|---|
author | Milner, David S. Attah, Victoria Cook, Emily Maguire, Finlay Savory, Fiona R. Morrison, Mark Müller, Carolin A. Foster, Peter G. Talbot, Nicholas J. Leonard, Guy Richards, Thomas A. |
author_facet | Milner, David S. Attah, Victoria Cook, Emily Maguire, Finlay Savory, Fiona R. Morrison, Mark Müller, Carolin A. Foster, Peter G. Talbot, Nicholas J. Leonard, Guy Richards, Thomas A. |
author_sort | Milner, David S. |
collection | PubMed |
description | Many microbes acquire metabolites in a “feeding” process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges. Transporter genes often encode single-gene phenotypes and tend to have low protein–protein interaction complexity and, as such, are potential candidates for HGT. Here we test the idea that HGT has underpinned the expansion of metabolic potential and substrate utilization via transfer of transporter-encoding genes. Using phylogenomics, we identify seven cases of transporter-gene HGT between fungal phyla, and investigate compatibility, localization, function, and fitness consequences when these genes are expressed in Saccharomyces cerevisiae. Using this approach, we demonstrate that the transporters identified can alter how fungi utilize a range of metabolites, including peptides, polyols, and sugars. We then show, for one model gene, that transporter gene acquisition by HGT can significantly alter the fitness landscape of S. cerevisiae. We therefore provide evidence that transporter HGT occurs between fungi, alters how fungi can acquire metabolites, and can drive gain in fitness. We propose a “transporter-gene acquisition ratchet,” where transporter repertoires are continually augmented by duplication, HGT, and differential loss, collectively acting to overwrite, fine-tune, and diversify the complement of transporters present in a genome. |
format | Online Article Text |
id | pubmed-6431176 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-64311762019-03-28 Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes Milner, David S. Attah, Victoria Cook, Emily Maguire, Finlay Savory, Fiona R. Morrison, Mark Müller, Carolin A. Foster, Peter G. Talbot, Nicholas J. Leonard, Guy Richards, Thomas A. Proc Natl Acad Sci U S A PNAS Plus Many microbes acquire metabolites in a “feeding” process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges. Transporter genes often encode single-gene phenotypes and tend to have low protein–protein interaction complexity and, as such, are potential candidates for HGT. Here we test the idea that HGT has underpinned the expansion of metabolic potential and substrate utilization via transfer of transporter-encoding genes. Using phylogenomics, we identify seven cases of transporter-gene HGT between fungal phyla, and investigate compatibility, localization, function, and fitness consequences when these genes are expressed in Saccharomyces cerevisiae. Using this approach, we demonstrate that the transporters identified can alter how fungi utilize a range of metabolites, including peptides, polyols, and sugars. We then show, for one model gene, that transporter gene acquisition by HGT can significantly alter the fitness landscape of S. cerevisiae. We therefore provide evidence that transporter HGT occurs between fungi, alters how fungi can acquire metabolites, and can drive gain in fitness. We propose a “transporter-gene acquisition ratchet,” where transporter repertoires are continually augmented by duplication, HGT, and differential loss, collectively acting to overwrite, fine-tune, and diversify the complement of transporters present in a genome. National Academy of Sciences 2019-03-19 2019-03-06 /pmc/articles/PMC6431176/ /pubmed/30842288 http://dx.doi.org/10.1073/pnas.1815994116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Milner, David S. Attah, Victoria Cook, Emily Maguire, Finlay Savory, Fiona R. Morrison, Mark Müller, Carolin A. Foster, Peter G. Talbot, Nicholas J. Leonard, Guy Richards, Thomas A. Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes |
title | Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes |
title_full | Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes |
title_fullStr | Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes |
title_full_unstemmed | Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes |
title_short | Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes |
title_sort | environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431176/ https://www.ncbi.nlm.nih.gov/pubmed/30842288 http://dx.doi.org/10.1073/pnas.1815994116 |
work_keys_str_mv | AT milnerdavids environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT attahvictoria environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT cookemily environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT maguirefinlay environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT savoryfionar environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT morrisonmark environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT mullercarolina environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT fosterpeterg environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT talbotnicholasj environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT leonardguy environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes AT richardsthomasa environmentdependentfitnessgainscanbedrivenbyhorizontalgenetransferoftransporterencodinggenes |