Cargando…
Assembling responsive microgels at responsive lipid membranes
Directed colloidal self-assembly at fluid interfaces can have a large impact in the fields of nanotechnology, materials, and biomedical sciences. The ability to control interfacial self-assembly relies on the fine interplay between bulk and surface interactions. Here, we investigate the interfacial...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431181/ https://www.ncbi.nlm.nih.gov/pubmed/30824593 http://dx.doi.org/10.1073/pnas.1807790116 |
_version_ | 1783405895513800704 |
---|---|
author | Wang, Meina Mihut, Adriana M. Rieloff, Ellen Dabkowska, Aleksandra P. Månsson, Linda K. Immink, Jasper N. Sparr, Emma Crassous, Jérôme J. |
author_facet | Wang, Meina Mihut, Adriana M. Rieloff, Ellen Dabkowska, Aleksandra P. Månsson, Linda K. Immink, Jasper N. Sparr, Emma Crassous, Jérôme J. |
author_sort | Wang, Meina |
collection | PubMed |
description | Directed colloidal self-assembly at fluid interfaces can have a large impact in the fields of nanotechnology, materials, and biomedical sciences. The ability to control interfacial self-assembly relies on the fine interplay between bulk and surface interactions. Here, we investigate the interfacial assembly of thermoresponsive microgels and lipogels at the surface of giant unilamellar vesicles (GUVs) consisting of phospholipids bilayers with different compositions. By altering the properties of the lipid membrane and the microgel particles, it is possible to control the adsorption/desorption processes as well as the organization and dynamics of the colloids at the vesicle surface. No translocation of the microgels and lipogels through the membrane was observed for any of the membrane compositions and temperatures investigated. The lipid membranes with fluid chains provide highly dynamic interfaces that can host and mediate long-range ordering into 2D hexagonal crystals. This is in clear contrast to the conditions when the membranes are composed of lipids with solid chains, where there is no crystalline arrangement, and most of the particles desorb from the membrane. Likewise, we show that in segregated membranes, the soft microgel colloids form closely packed 2D crystals on the fluid bilayer domains, while hardly any particles adhere to the more solid bilayer domains. These findings thus present an approach for selective and controlled colloidal assembly at lipid membranes, opening routes toward the development of tunable soft materials. |
format | Online Article Text |
id | pubmed-6431181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-64311812019-03-28 Assembling responsive microgels at responsive lipid membranes Wang, Meina Mihut, Adriana M. Rieloff, Ellen Dabkowska, Aleksandra P. Månsson, Linda K. Immink, Jasper N. Sparr, Emma Crassous, Jérôme J. Proc Natl Acad Sci U S A PNAS Plus Directed colloidal self-assembly at fluid interfaces can have a large impact in the fields of nanotechnology, materials, and biomedical sciences. The ability to control interfacial self-assembly relies on the fine interplay between bulk and surface interactions. Here, we investigate the interfacial assembly of thermoresponsive microgels and lipogels at the surface of giant unilamellar vesicles (GUVs) consisting of phospholipids bilayers with different compositions. By altering the properties of the lipid membrane and the microgel particles, it is possible to control the adsorption/desorption processes as well as the organization and dynamics of the colloids at the vesicle surface. No translocation of the microgels and lipogels through the membrane was observed for any of the membrane compositions and temperatures investigated. The lipid membranes with fluid chains provide highly dynamic interfaces that can host and mediate long-range ordering into 2D hexagonal crystals. This is in clear contrast to the conditions when the membranes are composed of lipids with solid chains, where there is no crystalline arrangement, and most of the particles desorb from the membrane. Likewise, we show that in segregated membranes, the soft microgel colloids form closely packed 2D crystals on the fluid bilayer domains, while hardly any particles adhere to the more solid bilayer domains. These findings thus present an approach for selective and controlled colloidal assembly at lipid membranes, opening routes toward the development of tunable soft materials. National Academy of Sciences 2019-03-19 2019-03-01 /pmc/articles/PMC6431181/ /pubmed/30824593 http://dx.doi.org/10.1073/pnas.1807790116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Wang, Meina Mihut, Adriana M. Rieloff, Ellen Dabkowska, Aleksandra P. Månsson, Linda K. Immink, Jasper N. Sparr, Emma Crassous, Jérôme J. Assembling responsive microgels at responsive lipid membranes |
title | Assembling responsive microgels at responsive lipid membranes |
title_full | Assembling responsive microgels at responsive lipid membranes |
title_fullStr | Assembling responsive microgels at responsive lipid membranes |
title_full_unstemmed | Assembling responsive microgels at responsive lipid membranes |
title_short | Assembling responsive microgels at responsive lipid membranes |
title_sort | assembling responsive microgels at responsive lipid membranes |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431181/ https://www.ncbi.nlm.nih.gov/pubmed/30824593 http://dx.doi.org/10.1073/pnas.1807790116 |
work_keys_str_mv | AT wangmeina assemblingresponsivemicrogelsatresponsivelipidmembranes AT mihutadrianam assemblingresponsivemicrogelsatresponsivelipidmembranes AT rieloffellen assemblingresponsivemicrogelsatresponsivelipidmembranes AT dabkowskaaleksandrap assemblingresponsivemicrogelsatresponsivelipidmembranes AT manssonlindak assemblingresponsivemicrogelsatresponsivelipidmembranes AT imminkjaspern assemblingresponsivemicrogelsatresponsivelipidmembranes AT sparremma assemblingresponsivemicrogelsatresponsivelipidmembranes AT crassousjeromej assemblingresponsivemicrogelsatresponsivelipidmembranes |