Cargando…
A New UPLC-MS/MS Method Validated for Quantification of Jervine in Rat Plasma and the Study of Its Pharmacokinetics in Rats
The aim of this study was to develop an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to assess the concentration of jervine in rat plasma and its pharmacokinetics. Diazepam was used as internal standard (IS). The chromatographic separation of jervine and IS was...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431447/ https://www.ncbi.nlm.nih.gov/pubmed/30956840 http://dx.doi.org/10.1155/2019/5163625 |
Sumario: | The aim of this study was to develop an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to assess the concentration of jervine in rat plasma and its pharmacokinetics. Diazepam was used as internal standard (IS). The chromatographic separation of jervine and IS was carried out on an UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with a flow rate of 0.4 mL/min. A mixture of acetonitrile and water (0.1% formic acid) was used as a mobile phase. The UPLC-MS/MS was equipped with an electrospray ionization (ESI), adopting multiple reactive monitoring mode to determine jervine in rat plasma. The retention times of jervine and the internal standard were 1.71 and 2.13 min, respectively. The calibration curve of jervine ranged between 1 and 1000 ng/mL. The lower limit of quantitation (LLOQ) was 1 ng/mL, and the lower limit of determination (LLOD) was 0.2 ng/mL. The accuracy was ±6%; the interday precision and intraday precision were no more than 9%. The recovery was higher than 90.3%, and the matrix effect was lower than 10%. The UPLC-MS/MS method was successfully developed and used for the application of the pharmacokinetic study. The primary pharmacokinetic parameters of jervine in this study were as follows: the AUC((0–∞)) was 969.3 ± 277.7 ng/mL·h, the C(max) was 506.6 ± 192.8 ng/mL, the CL/F was 1.7 ± 0.5 L/h/kg, and the t(1/2) was 3.4 ± 1.2 h. |
---|