Cargando…

A New Electrochemical Sensor for Direct Detection of Purine Antimetabolites and DNA Degradation

The development of a reliable electrochemical sensor using a hybrid nanocomposite consisting of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) functionalized graphene oxide (GrO-IL) and gold nanoparticles (AuNPs) stabilized by chitosan (Chit) was described. The new sensor, labelled a...

Descripción completa

Detalles Bibliográficos
Autores principales: Shpigun, Liliya K., Andryukhina, Elena Yu.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431463/
https://www.ncbi.nlm.nih.gov/pubmed/30984441
http://dx.doi.org/10.1155/2019/1572526
Descripción
Sumario:The development of a reliable electrochemical sensor using a hybrid nanocomposite consisting of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) functionalized graphene oxide (GrO-IL) and gold nanoparticles (AuNPs) stabilized by chitosan (Chit) was described. The new sensor, labelled as GrO-IL-AuNPs-Chit/CSE, exhibited an improved electrocatalytic response to cancer drugs such as purine antimetabolites (6-thioguanine, 6-mercaptopurine, and azathioprine) in a wide concentration range with a low detection limit (20–40 nmol·L(−1), S/N = 3), and satisfactory recoveries (97.1–103.0%). The sensor has been also successfully used for cyclic voltammetric study of a salmon sperm double-stranded DNA degradation and DNA-6-mercaptopurine interaction in aqueous solutions (pH 7.4).