Cargando…

Dynamics of brain perfusion and cognitive performance in revascularization of carotid artery stenosis()

INTRODUCTION: There is evidence suggesting a detrimental effect of asymptomatic carotid artery stenosis on cognitive function even in the absence of ischemic cerebral lesions. Hypoperfusion has been suggested as pathophysiological mechanism causing cognitive impairment. We aimed to assess cognitive...

Descripción completa

Detalles Bibliográficos
Autores principales: Schröder, Julian, Heinze, Marlene, Günther, Matthias, Cheng, Bastian, Nickel, Alina, Schröder, Tanja, Fischer, Felix, Kessner, Simon S., Magnus, Tim, Fiehler, Jens, Larena-Avellaneda, Axel, Gerloff, Christian, Thomalla, Götz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431743/
https://www.ncbi.nlm.nih.gov/pubmed/30903966
http://dx.doi.org/10.1016/j.nicl.2019.101779
Descripción
Sumario:INTRODUCTION: There is evidence suggesting a detrimental effect of asymptomatic carotid artery stenosis on cognitive function even in the absence of ischemic cerebral lesions. Hypoperfusion has been suggested as pathophysiological mechanism causing cognitive impairment. We aimed to assess cognitive performance and cerebral perfusion changes in patients with carotid artery stenosis without ischemic lesions by arterial spin labeling (ASL) and contrast enhanced (CE) perfusion MRI before and after revascularization therapy. METHODS: 17 asymptomatic patients with unilateral high-grade (≥70%) carotid artery stenosis without evidence of structural brain lesions underwent ASL and CE perfusion MRI and cognitive testing (MMSE, DemTect, Clock-Drawing Test, Trail-Making Test, Stroop Test) before and 6–8 weeks after revascularization therapy by endarterectomy or stenting. Multiparametric perfusion maps (ASL: cerebral blood flow (ASL-CBF), bolus arrival time (ASL-BAT); CE: cerebral blood flow (CE-CBF), mean transit time (CE-MTT), cerebral blood volume (CE-CBV)) were calculated and analyzed by vascular territory. Relative perfusion values were calculated. RESULTS: Multivariate analysis revealed a significant impact of revascularization therapy on all perfusion measures analyzed. At baseline post-hoc testing showed significant hypoperfusion in MCA borderzones as assessed by ASL-CBF, ASL-BAT, CE-MTT and CE-CBV. All perfusion alterations normalized after revascularization. We did not observe any significant correlation of cognitive test results with perfusion parameters. There was no significant change in cognitive performance after revascularization. CONCLUSION: We found evidence of traceable perfusion alterations in patients with high grade carotid artery stenosis in the absence of structural brain lesions, which proved fully reversible after revascularization therapy. In this cohort of asymptomatic patients we did not observe an association of hypoperfusion with cognitive performance.