Cargando…
Synthesis and Characterization of PEDOT:P(SS-co-VTMS) with Hydrophobic Properties and Excellent Thermal Stability
Hydrophobic and comparatively thermally-stable poly(3,4-ethylenedioxythiophene), i.e., poly(styrene sulfonate-co-vinyltrimethoxysilane) (PEDOT:P(SS-co-VTMS)) copolymer was successfully synthesized via the introduction of silane coupling agent into the PSS main chain to form P(SS-co-VTMS) copolymers....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431847/ https://www.ncbi.nlm.nih.gov/pubmed/30979282 http://dx.doi.org/10.3390/polym8050189 |
Sumario: | Hydrophobic and comparatively thermally-stable poly(3,4-ethylenedioxythiophene), i.e., poly(styrene sulfonate-co-vinyltrimethoxysilane) (PEDOT:P(SS-co-VTMS)) copolymer was successfully synthesized via the introduction of silane coupling agent into the PSS main chain to form P(SS-co-VTMS) copolymers. PSS and P(SS-co-VMTS) copolymers were successfully synthesized via radical solution polymerization, and PEDOT:P(SS-co-VTMS) was synthesized via Fe(+)-catalyzed oxidative polymerization. The characterization of PEDOT:P(SS-co-VTMS) was performed through an analysis of Fourier transform infrared spectroscopy (FTIR) results, water contact angle and optical images. The electrical properties of conductive PEDOT:P(SS-co-VTMS) thin films were evaluated by studying the influence of the VTMS content on the electrical and physical properties. The conductivity of PEDOT:P(SS-co-VTMS) decreased with an increase in the VTMS content, but was close to that of the PEDOT:PSS, 235.9 S·cm(−1). The introduction of VTMS into the PSS copolymer improved the mechanical properties and thermal stability and increased the hydrophobicity. The thermal stability test at a temperature over 240 °C indicated that the sheet resistance of PEDOT:PSS increased by 3,012%. The sheet resistance of PEDOT:P(SS-co-VTMS), on the other hand, only increased by 480%. The stability of PEDOT:P(SS-co-VTMS) was six-times higher than that of the reference PEDOT:PSS. |
---|