Cargando…

Relaxation Oscillation with Picosecond Spikes in a Conjugated Polymer Laser

Optically pumped conjugated polymer lasers are good competitors for dye lasers, often complementing and occasionally replacing them. This new type of laser material has broad bandwidths and high optical gains comparable to conventional laser dyes. Since the Stokes’ shift is unusually large, the conj...

Descripción completa

Detalles Bibliográficos
Autores principales: Mujamammi, Wafa Musa, Prasad, Saradh, AlSalhi, Mohamad S., Masilamani, Vadivel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431877/
https://www.ncbi.nlm.nih.gov/pubmed/30974639
http://dx.doi.org/10.3390/polym8100364
Descripción
Sumario:Optically pumped conjugated polymer lasers are good competitors for dye lasers, often complementing and occasionally replacing them. This new type of laser material has broad bandwidths and high optical gains comparable to conventional laser dyes. Since the Stokes’ shift is unusually large, the conjugated polymer has a potential for high power laser action, facilitated by high concentration. This paper reports the results of a new conjugated polymer, the poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}](PFO-co-MEH-PPV) material, working in the green region. Also discussed are the spectral and temporal features of the amplified spontaneous emissions (ASE) from the conjugated polymer PFO-co-MEH-PPV in a few solvents. When pumped by the third harmonic of the Nd:YAG laser of 10 ns pulse width, the time-resolved spectra of the ASE show relaxation oscillations and spikes of 600 ps pulses. To the best of our knowledge, this is the first report on relaxation oscillations in conjugated-polymer lasers.