Cargando…
Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds
Advances in treatment of tooth injury have shown that tooth regeneration from the pulp was a viable alternative of root canal therapy. In this study, we demonstrated that Gutta-percha, nanocomposites primarily used for obturation of the canal, are not cytotoxic and can induce differentiation of dent...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431971/ https://www.ncbi.nlm.nih.gov/pubmed/30979287 http://dx.doi.org/10.3390/polym8050193 |
_version_ | 1783406028129304576 |
---|---|
author | Zhang, Liudi Yu, Yingjie Joubert, Christopher Bruder, George Liu, Ying Chang, Chung-Chueh Simon, Marcia Walker, Stephen G. Rafailovich, Miriam |
author_facet | Zhang, Liudi Yu, Yingjie Joubert, Christopher Bruder, George Liu, Ying Chang, Chung-Chueh Simon, Marcia Walker, Stephen G. Rafailovich, Miriam |
author_sort | Zhang, Liudi |
collection | PubMed |
description | Advances in treatment of tooth injury have shown that tooth regeneration from the pulp was a viable alternative of root canal therapy. In this study, we demonstrated that Gutta-percha, nanocomposites primarily used for obturation of the canal, are not cytotoxic and can induce differentiation of dental pulp stem cells (DPSC) in the absence of soluble mediators. Flat scaffolds were obtained by spin coating Si wafers with three Gutta-percha compounds: GuttaCore™, ProTaper™, and Lexicon™. The images of annealed surfaces showed that the nanoparticles were encapsulated, forming surfaces with root mean square (RMS) roughness of 136–211 nm. Then, by culturing DPSC on these substrates we found that after some initial difficulty in adhesion, confluent tissues were formed after 21 days. Imaging of the polyisoprene (PI) surfaces showed that biomineral deposition only occurred when dexamethasone was present in the media. Spectra obtained from the minerals was consistent with that of hydroxyapatite (HA). In contrast, HA deposition was observed on all Gutta-percha scaffolds regardless of the presence or absence of dexamethasone, implying that surface roughness may be an enabling factor in the differentiation process. These results indicate that Gutta-percha nanocomposites may be good candidates for pulp regeneration therapy. |
format | Online Article Text |
id | pubmed-6431971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64319712019-04-02 Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds Zhang, Liudi Yu, Yingjie Joubert, Christopher Bruder, George Liu, Ying Chang, Chung-Chueh Simon, Marcia Walker, Stephen G. Rafailovich, Miriam Polymers (Basel) Article Advances in treatment of tooth injury have shown that tooth regeneration from the pulp was a viable alternative of root canal therapy. In this study, we demonstrated that Gutta-percha, nanocomposites primarily used for obturation of the canal, are not cytotoxic and can induce differentiation of dental pulp stem cells (DPSC) in the absence of soluble mediators. Flat scaffolds were obtained by spin coating Si wafers with three Gutta-percha compounds: GuttaCore™, ProTaper™, and Lexicon™. The images of annealed surfaces showed that the nanoparticles were encapsulated, forming surfaces with root mean square (RMS) roughness of 136–211 nm. Then, by culturing DPSC on these substrates we found that after some initial difficulty in adhesion, confluent tissues were formed after 21 days. Imaging of the polyisoprene (PI) surfaces showed that biomineral deposition only occurred when dexamethasone was present in the media. Spectra obtained from the minerals was consistent with that of hydroxyapatite (HA). In contrast, HA deposition was observed on all Gutta-percha scaffolds regardless of the presence or absence of dexamethasone, implying that surface roughness may be an enabling factor in the differentiation process. These results indicate that Gutta-percha nanocomposites may be good candidates for pulp regeneration therapy. MDPI 2016-05-13 /pmc/articles/PMC6431971/ /pubmed/30979287 http://dx.doi.org/10.3390/polym8050193 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Liudi Yu, Yingjie Joubert, Christopher Bruder, George Liu, Ying Chang, Chung-Chueh Simon, Marcia Walker, Stephen G. Rafailovich, Miriam Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds |
title | Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds |
title_full | Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds |
title_fullStr | Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds |
title_full_unstemmed | Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds |
title_short | Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds |
title_sort | differentiation of dental pulp stem cells on gutta-percha scaffolds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431971/ https://www.ncbi.nlm.nih.gov/pubmed/30979287 http://dx.doi.org/10.3390/polym8050193 |
work_keys_str_mv | AT zhangliudi differentiationofdentalpulpstemcellsonguttaperchascaffolds AT yuyingjie differentiationofdentalpulpstemcellsonguttaperchascaffolds AT joubertchristopher differentiationofdentalpulpstemcellsonguttaperchascaffolds AT brudergeorge differentiationofdentalpulpstemcellsonguttaperchascaffolds AT liuying differentiationofdentalpulpstemcellsonguttaperchascaffolds AT changchungchueh differentiationofdentalpulpstemcellsonguttaperchascaffolds AT simonmarcia differentiationofdentalpulpstemcellsonguttaperchascaffolds AT walkerstepheng differentiationofdentalpulpstemcellsonguttaperchascaffolds AT rafailovichmiriam differentiationofdentalpulpstemcellsonguttaperchascaffolds |