Cargando…
Applications of Tris(4-(thiophen-2-yl)phenyl)amine- and Dithienylpyrrole-based Conjugated Copolymers in High-Contrast Electrochromic Devices
Tris(4-(thiophen-2-yl)phenyl)amine- and dithienylpyrrole-based copolymers (P(TTPA-co-DIT) and P(TTPA-co-BDTA)) were electropolymerized on ITO electrode by applying constant potentials of 1.0, 1.1, and 1.2 V. Spectroelectrochemical investigations revealed that P(TTPA-co-DIT) film displayed more color...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431980/ https://www.ncbi.nlm.nih.gov/pubmed/30979303 http://dx.doi.org/10.3390/polym8060206 |
Sumario: | Tris(4-(thiophen-2-yl)phenyl)amine- and dithienylpyrrole-based copolymers (P(TTPA-co-DIT) and P(TTPA-co-BDTA)) were electropolymerized on ITO electrode by applying constant potentials of 1.0, 1.1, and 1.2 V. Spectroelectrochemical investigations revealed that P(TTPA-co-DIT) film displayed more color changes than P(TTPA-co-BDTA) film. The P(TTPA-co-DIT) film is yellow in the neutral state, yellowish-green and green in the intermediate state, and blue (1.2 V) in highly oxidized state. The ∆T(max) of the P(TTPA-co-DIT) and P(TTPA-co-BDTA) films were measured as 60.3% at 1042 nm and 47.1% at 1096 nm, respectively, and the maximum coloration efficiency (η) of P(TTPA-co-DIT) and P(TTPA-co-BDTA) films were calculated to be 181.9 cm(2)·C(−)(1) at 1042 nm and 217.8 cm(2)·C(−)(1) at 1096 nm, respectively, in an ionic liquid solution. Dual type electrochromic devices (ECDs) consisting of P(TTPA-co-DIT) (or P(TTPA-co-BDTA)) anodic copolymer, ionic liquid-based electrolyte, and poly(3,4-(2,2-diethylpropylenedioxy)thiophene) (PProDOT-Et(2)) cathodic polymer were constructed. P(TTPA-co-BDTA)/PProDOT-Et(2) ECD showed high ΔT(max) (48.1%) and high coloration efficiency (649.4 cm(2)·C(−)(1)) at 588 nm. Moreover, P(TTPA-co-DIT)/PProDOT-Et(2) and P(TTPA-co-BDTA)/PProDOT-Et(2) ECDs displayed satisfactory optical memory and long term switching stability. |
---|