Cargando…
Preparation and Characterization of Highly Aligned Carbon Nanotubes/Polyacrylonitrile Composite Nanofibers
In the electrospinning process, a modified parallel electrode method (MPEM), conducted by placing a positively charged ring between the needle and the parallel electrode collector, was used to fabricate highly aligned carbon nanotubes/polyacrylonitrile (CNTs/PAN) composite nanofibers. Characterizati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432014/ https://www.ncbi.nlm.nih.gov/pubmed/30970687 http://dx.doi.org/10.3390/polym9010001 |
Sumario: | In the electrospinning process, a modified parallel electrode method (MPEM), conducted by placing a positively charged ring between the needle and the parallel electrode collector, was used to fabricate highly aligned carbon nanotubes/polyacrylonitrile (CNTs/PAN) composite nanofibers. Characterizations of the samples—such as morphology, the degree of alignment, and mechanical and conductive properties—were investigated by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), universal testing machine, high-resistance meter, and other methods. The results showed the MPEM could improve the alignment and uniformity of electrospun CNTs/PAN composite nanofibers, and enhance their mechanical and conductive properties. This meant the successful preparation of highly aligned CNT-reinforced PAN nanofibers with enhanced physical properties, suggesting their potential application in appliances and communication areas. |
---|