Cargando…

Preparation and Characterization of Quaternized Chitosan Coated Alginate Microspheres for Blue Dextran Delivery

In this study, 2-[(Acryloyloxy)ethyl]trimethylammonium chloride was graft polymerized onto chitosan (CS) to form quaternary ammonium CS (QAC) by using ammonium persulfate as a redox initiator. Alginate (ALG) microspheres loaded with a water-soluble macromolecular model drug, blue dextran (BD), were...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Kuo-Yu, Zeng, Si-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432057/
https://www.ncbi.nlm.nih.gov/pubmed/30970889
http://dx.doi.org/10.3390/polym9060210
Descripción
Sumario:In this study, 2-[(Acryloyloxy)ethyl]trimethylammonium chloride was graft polymerized onto chitosan (CS) to form quaternary ammonium CS (QAC) by using ammonium persulfate as a redox initiator. Alginate (ALG) microspheres loaded with a water-soluble macromolecular model drug, blue dextran (BD), were obtained by corporation of coaxial gas-flow method and ionic gelation process. CS and QAC were then coated on the surfaces of ALG microspheres to generate core/shell structured CS/ALG and QAC/ALG microspheres, respectively. The experiment result showed that QAC/ALG microspheres had a smaller particle size due to the stronger electrostatic interactions between QAC and ALG molecules. In vitro drug release studies at pH 7.4 and pH 9.0 exhibited that the release rate of BD was significantly decreased after ALG microspheres coating with CS and QAC. Moreover, ALG microspheres coated with QAC showed a prolonged release profile for BD at pH 9.0. Therefore, QAC/ALG microspheres may be a promising hydrophilic macromolecular drug carrier for a prolonged and sustained delivery.