Cargando…
Light and Temperature as Dual Stimuli Lead to Self-Assembly of Hyperbranched Azobenzene-Terminated Poly(N-isopropylacrylamide)
Hyperbranched poly(N-isopropylacrylamide)s (HBPNIPAMs) end-capped with different azobenzene chromophores (HBPNIPAM-Azo-OC(3)H(7), HBPNIPAM-Azo-OCH(3), HBPNIPAM-Azo, and HBPNIPAM-Azo-COOH) were successfully synthesized by atom transfer radical polymerization (ATRP) of N-isopropylacrylamide using diff...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432090/ https://www.ncbi.nlm.nih.gov/pubmed/30979277 http://dx.doi.org/10.3390/polym8050183 |
Sumario: | Hyperbranched poly(N-isopropylacrylamide)s (HBPNIPAMs) end-capped with different azobenzene chromophores (HBPNIPAM-Azo-OC(3)H(7), HBPNIPAM-Azo-OCH(3), HBPNIPAM-Azo, and HBPNIPAM-Azo-COOH) were successfully synthesized by atom transfer radical polymerization (ATRP) of N-isopropylacrylamide using different azobenzene-functional initiators. All HBPNIPAMs showed a similar highly branched structure, similar content of azobenzene chromophores, and similar absolute weight/average molecular weight. The different azobenzene structures at the end of the HBPNIPAMs exhibited reversible trans-cis-trans isomerization behavior under alternating UV and Vis irradiation, which lowered the critical solution temperature (LCST) due to different self-assembling behaviors. The spherical aggregates of HBPNIPAM-Azo-OC(3)H(7) and HBPNIPAM-Azo-OCH(3) containing hydrophobic para substituents either changed to bigger nanorods or increased in number, leading to a change in LCST of −2.0 and −1.0 °C, respectively, after UV irradiation. However, the unimolecular aggregates of HBPNIPAM-Azo were unchanged, while the unstable multimolecular particles of HBPNIPAM-Azo-COOH end-capped with strongly polar carboxyl groups partly dissociated to form a greater number of unimolecular aggregates and led to an LCST increase of 1.0 °C. |
---|