Cargando…
Spatio-Temporal Proximity Characteristics in 3D μ-Printing via Multi-Photon Absorption
One of the major challenges in high-resolution μ-printing is the cross-talk between features written in close proximity—the proximity effect. This effect prevents, e.g., gratings with periods below a few hundred nanometers. Surprisingly, the dependence of this effect on space and time has not thorou...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432245/ https://www.ncbi.nlm.nih.gov/pubmed/30974572 http://dx.doi.org/10.3390/polym8080297 |
Sumario: | One of the major challenges in high-resolution μ-printing is the cross-talk between features written in close proximity—the proximity effect. This effect prevents, e.g., gratings with periods below a few hundred nanometers. Surprisingly, the dependence of this effect on space and time has not thoroughly been investigated. Here, we present a spatial-light-modulator based method to dynamically measure the strength of the proximity effect on length and timescales typical to μ-printing. The proximity strength is compared in various photo resists. The results indicate that molecular diffusion strongly contributes to the proximity effect. |
---|