Cargando…
Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions
Isothermal and non-isothermal crystallization behaviours of the blends of long chain branched polypropylene (LCB PP) and poly(ethylene-co-octene) (PEOc) with different weight ratios were studied under quiescent and shear flow using polarized optical microscopy (POM), differential scanning calorimetr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432268/ https://www.ncbi.nlm.nih.gov/pubmed/30970914 http://dx.doi.org/10.3390/polym9060236 |
_version_ | 1783406095855779840 |
---|---|
author | Zhang, Zinan Yu, Fengyuan Zhang, Hongbin |
author_facet | Zhang, Zinan Yu, Fengyuan Zhang, Hongbin |
author_sort | Zhang, Zinan |
collection | PubMed |
description | Isothermal and non-isothermal crystallization behaviours of the blends of long chain branched polypropylene (LCB PP) and poly(ethylene-co-octene) (PEOc) with different weight ratios were studied under quiescent and shear flow using polarized optical microscopy (POM), differential scanning calorimetry (DSC), and rheological measurements. Experimental results showed that the crystallization of the LCB PP/PEOc blends were significantly accelerated due to the existence of the long chain branches (LCBs), the blends being able to rapidly crystallize even at 146 °C. The addition of PEOc that acts as a nucleating agent, could also increase the crystallization rate of LCB PP. However, the crystallization rate of LCB PP was reduced when the PEOc concentration was more than 60 wt %, showing a retarded crystallization growth mechanism. The morphology of the binary blend was changed from a sea-island structure to a co-continuous phase structure when the PEOc concentration was increased from 40 to 60 wt %. In comparison with linear isotactic iPP/PEOc, the interfacial tension between LCB PP and PEOc was increased. In addition, flow-induced crystallization of LCB PP/PEOc blends was observed. Possible crystallization mechanisms for both LCB PP/PEOc and iPP/PEOc blends were proposed. |
format | Online Article Text |
id | pubmed-6432268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64322682019-04-02 Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions Zhang, Zinan Yu, Fengyuan Zhang, Hongbin Polymers (Basel) Article Isothermal and non-isothermal crystallization behaviours of the blends of long chain branched polypropylene (LCB PP) and poly(ethylene-co-octene) (PEOc) with different weight ratios were studied under quiescent and shear flow using polarized optical microscopy (POM), differential scanning calorimetry (DSC), and rheological measurements. Experimental results showed that the crystallization of the LCB PP/PEOc blends were significantly accelerated due to the existence of the long chain branches (LCBs), the blends being able to rapidly crystallize even at 146 °C. The addition of PEOc that acts as a nucleating agent, could also increase the crystallization rate of LCB PP. However, the crystallization rate of LCB PP was reduced when the PEOc concentration was more than 60 wt %, showing a retarded crystallization growth mechanism. The morphology of the binary blend was changed from a sea-island structure to a co-continuous phase structure when the PEOc concentration was increased from 40 to 60 wt %. In comparison with linear isotactic iPP/PEOc, the interfacial tension between LCB PP and PEOc was increased. In addition, flow-induced crystallization of LCB PP/PEOc blends was observed. Possible crystallization mechanisms for both LCB PP/PEOc and iPP/PEOc blends were proposed. MDPI 2017-06-20 /pmc/articles/PMC6432268/ /pubmed/30970914 http://dx.doi.org/10.3390/polym9060236 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Zinan Yu, Fengyuan Zhang, Hongbin Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions |
title | Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions |
title_full | Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions |
title_fullStr | Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions |
title_full_unstemmed | Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions |
title_short | Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions |
title_sort | isothermal and non-isothermal crystallization studies of long chain branched polypropylene containing poly(ethylene-co-octene) under quiescent and shear conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432268/ https://www.ncbi.nlm.nih.gov/pubmed/30970914 http://dx.doi.org/10.3390/polym9060236 |
work_keys_str_mv | AT zhangzinan isothermalandnonisothermalcrystallizationstudiesoflongchainbranchedpolypropylenecontainingpolyethylenecoocteneunderquiescentandshearconditions AT yufengyuan isothermalandnonisothermalcrystallizationstudiesoflongchainbranchedpolypropylenecontainingpolyethylenecoocteneunderquiescentandshearconditions AT zhanghongbin isothermalandnonisothermalcrystallizationstudiesoflongchainbranchedpolypropylenecontainingpolyethylenecoocteneunderquiescentandshearconditions |