Cargando…

A Rapid and Efficient Route to Preparation of Isocyanate Microcapsules

In this paper, polyaryl polymethylene isocyanates (PAPI) were used as an innovative alternative material to prepare isocyanate microcapsules. PAPI could be used as core materials, which would react with small molecules containing active hydrogen (1,4-butanediol, ethylene glycol, 1,2-diaminoethane et...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yangbao, Jiang, Yang, Tan, Haiyan, Zhang, Yanhua, Gu, Jiyou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432291/
https://www.ncbi.nlm.nih.gov/pubmed/30970952
http://dx.doi.org/10.3390/polym9070274
Descripción
Sumario:In this paper, polyaryl polymethylene isocyanates (PAPI) were used as an innovative alternative material to prepare isocyanate microcapsules. PAPI could be used as core materials, which would react with small molecules containing active hydrogen (1,4-butanediol, ethylene glycol, 1,2-diaminoethane etc.). The reaction products of PAPI and active hydrogen would form a shell by interfacial polymerization reaction in an oil-in-water emulsion. Smooth spherical microcapsules of 70 ~ 180 μm in diameter were produced by controlling agitation rate (600 ~ 1200 rpm). High yields (~80%) of a free-flowing powder of PAPI/polyurethane and polyurea capsules were produced with a high isocyanate groups (–NCO) content of 23 wt % as determined by titration analysis. Structural analysis and quality assessments of each batch of microcapsules were performed by using thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. Preliminary results indicated the microcapsules were stable with only about 20% loss of –NCO detected after one month storage under ambient conditions. This work showed the great potential of novel microencapsulation technique in development of protection of –NCO and in aspects of micro- and nano-structure construction materials.