Cargando…
Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer
The stress-strain behavior of concrete can be improved by providing a lateral passive confining pressure, such as fiber-reinforced polymer (FRP) wrapping. Many axial stress-strain models have been proposed for FRP-confined concrete columns. However, few models can predict the stress-strain behavior...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432316/ https://www.ncbi.nlm.nih.gov/pubmed/30979281 http://dx.doi.org/10.3390/polym8050186 |
_version_ | 1783406107084980224 |
---|---|
author | Cao, Yu-Gui Jiang, Cheng Wu, Yu-Fei |
author_facet | Cao, Yu-Gui Jiang, Cheng Wu, Yu-Fei |
author_sort | Cao, Yu-Gui |
collection | PubMed |
description | The stress-strain behavior of concrete can be improved by providing a lateral passive confining pressure, such as fiber-reinforced polymer (FRP) wrapping. Many axial stress-strain models have been proposed for FRP-confined concrete columns. However, few models can predict the stress-strain behavior of confined concrete columns with more than two specified cross-sections. A stress-strain model of FRP-confined concrete columns with cross-sectional unification was developed in this paper based on a database from the existing literature that includes circular, square, rectangular and elliptical concrete columns that are highly confined by FRP jackets. Using the database, the existing theoretical models were evaluated. In addition, the ultimate stress and strain models with cross-sectional unification were proposed using two parameters: the cross-sectional aspect ratio and corner radius ratio. The elliptical cross-section can be considered as a rectangular one with a special corner radius for the model calculations. A simple and accurate model of the equivalent corner radius ratio for elliptical columns was proposed. Compared to the other existing models and experimental data, the proposed models show good performance. |
format | Online Article Text |
id | pubmed-6432316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64323162019-04-02 Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer Cao, Yu-Gui Jiang, Cheng Wu, Yu-Fei Polymers (Basel) Article The stress-strain behavior of concrete can be improved by providing a lateral passive confining pressure, such as fiber-reinforced polymer (FRP) wrapping. Many axial stress-strain models have been proposed for FRP-confined concrete columns. However, few models can predict the stress-strain behavior of confined concrete columns with more than two specified cross-sections. A stress-strain model of FRP-confined concrete columns with cross-sectional unification was developed in this paper based on a database from the existing literature that includes circular, square, rectangular and elliptical concrete columns that are highly confined by FRP jackets. Using the database, the existing theoretical models were evaluated. In addition, the ultimate stress and strain models with cross-sectional unification were proposed using two parameters: the cross-sectional aspect ratio and corner radius ratio. The elliptical cross-section can be considered as a rectangular one with a special corner radius for the model calculations. A simple and accurate model of the equivalent corner radius ratio for elliptical columns was proposed. Compared to the other existing models and experimental data, the proposed models show good performance. MDPI 2016-05-11 /pmc/articles/PMC6432316/ /pubmed/30979281 http://dx.doi.org/10.3390/polym8050186 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cao, Yu-Gui Jiang, Cheng Wu, Yu-Fei Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer |
title | Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer |
title_full | Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer |
title_fullStr | Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer |
title_full_unstemmed | Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer |
title_short | Cross-Sectional Unification on the Stress-Strain Model of Concrete Subjected to High Passive Confinement by Fiber-Reinforced Polymer |
title_sort | cross-sectional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432316/ https://www.ncbi.nlm.nih.gov/pubmed/30979281 http://dx.doi.org/10.3390/polym8050186 |
work_keys_str_mv | AT caoyugui crosssectionalunificationonthestressstrainmodelofconcretesubjectedtohighpassiveconfinementbyfiberreinforcedpolymer AT jiangcheng crosssectionalunificationonthestressstrainmodelofconcretesubjectedtohighpassiveconfinementbyfiberreinforcedpolymer AT wuyufei crosssectionalunificationonthestressstrainmodelofconcretesubjectedtohighpassiveconfinementbyfiberreinforcedpolymer |