Cargando…
Needleless Melt-Electrospinning of Biodegradable Poly(Lactic Acid) Ultrafine Fibers for the Removal of Oil from Water
As environmentally friendly and degradable material, Poly(lactic acid) (PLA) ultrafine fibers are promising candidates for the removal of oil from water. In this work, a self-established needleless melt-electrospinning process was used to produce PLA ultrafine fibers with diameters in the range of 8...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432370/ https://www.ncbi.nlm.nih.gov/pubmed/30970712 http://dx.doi.org/10.3390/polym9020003 |
Sumario: | As environmentally friendly and degradable material, Poly(lactic acid) (PLA) ultrafine fibers are promising candidates for the removal of oil from water. In this work, a self-established needleless melt-electrospinning process was used to produce PLA ultrafine fibers with diameters in the range of 800 nm–9 µm. In order to obtain ultrafine fibers, three types of hyperbranched polymers were respectively added into the melt for electrospinning. Effects of amount and molecular weight of the added hyperbranched polymers on average fiber diameter and its distribution, and contact angle were investigated. The prepared PLA ultrafine fibers exhibited superhydrophobicity with the contact angle as high as 156°, making it a potential candidate in marine oil spill recovery. The oil sorption capability of these fibers is as high as 159, 118, and 96 g/g for motor oil, crude oil, and diesel, respectively. Even after seven cycles of reuse, the fiber still maintained about 60% of its initial capacity of sorption. The kinetics of oil sorption in the film agrees very well with the pseudo-second-order kinetic model. This work is expected to promote the mass production and application of biodegradable PLA fibers in the treatment of marine oil spill pollution. |
---|