Cargando…
Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility
By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs) in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging fro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432372/ https://www.ncbi.nlm.nih.gov/pubmed/30974590 http://dx.doi.org/10.3390/polym8090270 |
_version_ | 1783406120216297472 |
---|---|
author | Wang, Zixuan Zheng, Zijian Liu, Jun Wu, Youping Zhang, Liqun |
author_facet | Wang, Zixuan Zheng, Zijian Liu, Jun Wu, Youping Zhang, Liqun |
author_sort | Wang, Zixuan |
collection | PubMed |
description | By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs) in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually increasing the grafted chain length. The radial distribution function and the total interaction energy between NPs are calculated. Meanwhile, the stress–strain behavior of each morphology and the morphological evolution during the uniaxial tension are simulated. In particular, the sheet structure exhibits the best mechanical reinforcement compared to other morphologies. In addition, the change of the grafted chain flexibility to semi-flexibility leads to the variation of the morphology. We also find that at long grafted chain length, the stress–strain behavior of the system with the semi-flexible grafted chain begins to exceed that of the system with the flexible grafted chain, attributed to the physical inter-locking interaction between the matrix and grafted polymer chains. A similar transition trend is as well found in the presence of the interfacial chemical couplings between grafted and matrix polymer chains. In general, this work is expected to help to design and fabricate high performance polymer nanocomposites filled with grafted NPs with excellent and controllable mechanical properties. |
format | Online Article Text |
id | pubmed-6432372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64323722019-04-02 Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility Wang, Zixuan Zheng, Zijian Liu, Jun Wu, Youping Zhang, Liqun Polymers (Basel) Article By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs) in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually increasing the grafted chain length. The radial distribution function and the total interaction energy between NPs are calculated. Meanwhile, the stress–strain behavior of each morphology and the morphological evolution during the uniaxial tension are simulated. In particular, the sheet structure exhibits the best mechanical reinforcement compared to other morphologies. In addition, the change of the grafted chain flexibility to semi-flexibility leads to the variation of the morphology. We also find that at long grafted chain length, the stress–strain behavior of the system with the semi-flexible grafted chain begins to exceed that of the system with the flexible grafted chain, attributed to the physical inter-locking interaction between the matrix and grafted polymer chains. A similar transition trend is as well found in the presence of the interfacial chemical couplings between grafted and matrix polymer chains. In general, this work is expected to help to design and fabricate high performance polymer nanocomposites filled with grafted NPs with excellent and controllable mechanical properties. MDPI 2016-08-25 /pmc/articles/PMC6432372/ /pubmed/30974590 http://dx.doi.org/10.3390/polym8090270 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Zixuan Zheng, Zijian Liu, Jun Wu, Youping Zhang, Liqun Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility |
title | Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility |
title_full | Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility |
title_fullStr | Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility |
title_full_unstemmed | Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility |
title_short | Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility |
title_sort | tuning the mechanical properties of polymer nanocomposites filled with grafted nanoparticles by varying the grafted chain length and flexibility |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432372/ https://www.ncbi.nlm.nih.gov/pubmed/30974590 http://dx.doi.org/10.3390/polym8090270 |
work_keys_str_mv | AT wangzixuan tuningthemechanicalpropertiesofpolymernanocompositesfilledwithgraftednanoparticlesbyvaryingthegraftedchainlengthandflexibility AT zhengzijian tuningthemechanicalpropertiesofpolymernanocompositesfilledwithgraftednanoparticlesbyvaryingthegraftedchainlengthandflexibility AT liujun tuningthemechanicalpropertiesofpolymernanocompositesfilledwithgraftednanoparticlesbyvaryingthegraftedchainlengthandflexibility AT wuyouping tuningthemechanicalpropertiesofpolymernanocompositesfilledwithgraftednanoparticlesbyvaryingthegraftedchainlengthandflexibility AT zhangliqun tuningthemechanicalpropertiesofpolymernanocompositesfilledwithgraftednanoparticlesbyvaryingthegraftedchainlengthandflexibility |