Cargando…
The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks
The degradation of the poly(trimethylene carbonate) (PTMC) and poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-co-CL)) networks cross-linked by 0.01 and 0.02 mol % 2,2′-bis(trimethylene carbonate-5-yl)-butylether (BTB) was carried out in the conditions of hydrolysis and enzymes in vitro and su...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432455/ https://www.ncbi.nlm.nih.gov/pubmed/30979246 http://dx.doi.org/10.3390/polym8040151 |
Sumario: | The degradation of the poly(trimethylene carbonate) (PTMC) and poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-co-CL)) networks cross-linked by 0.01 and 0.02 mol % 2,2′-bis(trimethylene carbonate-5-yl)-butylether (BTB) was carried out in the conditions of hydrolysis and enzymes in vitro and subcutaneous implantation in vivo. The results showed that the cross-linked PTMC networks exhibited much faster degradation in enzymatic conditions in vitro and in vivo versus in a hydrolysis case due to the catalyst effect of enzymes; the weight loss and physical properties of the degraded networks were dependent on the BTB amount. The morphology observation in lipase and in vivo illustrated that enzymes played an important role in the surface erosion of cross-linked PTMC. The hydrolytic degradation rate of the cross-linked P(TMC-co-CL) networks increased with increasing ε-caprolactone (CL) content in composition due to the preferential cleavage of ester bonds. Cross-linking is an effective strategy to lower the degradation rate and enhance the form-stability of PTMC-based materials. |
---|