Cargando…

Enzymatic Synthesis of Biobased Polyesters and Polyamides

Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (for...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yi, Loos, Katja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432488/
https://www.ncbi.nlm.nih.gov/pubmed/30974520
http://dx.doi.org/10.3390/polym8070243
Descripción
Sumario:Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (for example, the “Plastic Soup”) as a public stereotype. To achieve green polymers, three elements should be entailed: (1) green raw materials, catalysts and solvents; (2) eco-friendly synthesis processes; and (3) sustainable polymers with a low carbon footprint, for example, (bio)degradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.