Cargando…

Polydopamine Particle as a Particulate Emulsifier

“Pickering-type” emulsions were prepared using polydopamine (PDA) particles as a particulate emulsifier and n-dodecane, methyl myristate, toluene or dichloromethane as an oil phase. All the emulsions prepared were oil-in-water type and an increase of PDA particle concentration decreased oil droplet...

Descripción completa

Detalles Bibliográficos
Autores principales: Nishizawa, Nobuaki, Kawamura, Ayaka, Kohri, Michinari, Nakamura, Yoshinobu, Fujii, Syuji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432528/
https://www.ncbi.nlm.nih.gov/pubmed/30979157
http://dx.doi.org/10.3390/polym8030062
Descripción
Sumario:“Pickering-type” emulsions were prepared using polydopamine (PDA) particles as a particulate emulsifier and n-dodecane, methyl myristate, toluene or dichloromethane as an oil phase. All the emulsions prepared were oil-in-water type and an increase of PDA particle concentration decreased oil droplet diameter. The PDA particles adsorbed to oil–water interface can be crosslinked using poly(ethylene imine) as a crosslinker, and the PDA particle-based colloidosomes were successfully fabricated. Scanning electron microscopy studies of the colloidosomes after removal of inner oil phase revealed a capsule morphology, which is strong evidence for the attachment of PDA particles at the oil–water interface thereby stabilizing the emulsion. The colloidosomes after removal of inner oil phase could retain their capsule morphology, even after sonication. On the other hand, the residues obtained after oil phase removal from the PDA particle-stabilized emulsion prepared in the absence of any crosslinker were broken into small fragments of PDA particle flocs after sonication.