Cargando…

Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes

Lithium metal batteries have been considerably limited by the problems of uncontrolled dendritic lithium formation and the highly reactive nature of lithium with electrolytes. Herein, we have developed functional porous bilayer composite separators by simply blade-coating polyacrylamide-grafted grap...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chuanfa, Liu, Shaohong, Shi, Chenguang, Liang, Ganghao, Lu, Zhitao, Fu, Ruowen, Wu, Dingcai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433896/
https://www.ncbi.nlm.nih.gov/pubmed/30911010
http://dx.doi.org/10.1038/s41467-019-09211-z
_version_ 1783406366860247040
author Li, Chuanfa
Liu, Shaohong
Shi, Chenguang
Liang, Ganghao
Lu, Zhitao
Fu, Ruowen
Wu, Dingcai
author_facet Li, Chuanfa
Liu, Shaohong
Shi, Chenguang
Liang, Ganghao
Lu, Zhitao
Fu, Ruowen
Wu, Dingcai
author_sort Li, Chuanfa
collection PubMed
description Lithium metal batteries have been considerably limited by the problems of uncontrolled dendritic lithium formation and the highly reactive nature of lithium with electrolytes. Herein, we have developed functional porous bilayer composite separators by simply blade-coating polyacrylamide-grafted graphene oxide molecular brushes onto commercial polypropylene separators. Our functional porous bilayer composite separators integrate the lithiophilic feature of hairy polyacrylamide chains and fast electrolyte diffusion pathways with the excellent mechanical strength of graphene oxide nanosheets and thus enable molecular-level homogeneous and fast lithium ionic flux on the surfaces of electrodes. As a result, dendrite-free uniform lithium deposition with a high Coulombic efficiency (98%) and ultralong-term reversible lithium plating/stripping (over 2600 h) at a high current density (2 mA cm(−2)) are achieved for lithium metal anodes. Remarkably, lithium metal anodes with an unprecedented stability of more than 1900 h cycling at an ultrahigh current density of 20 mA cm(−2) are demonstrated.
format Online
Article
Text
id pubmed-6433896
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64338962019-03-27 Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes Li, Chuanfa Liu, Shaohong Shi, Chenguang Liang, Ganghao Lu, Zhitao Fu, Ruowen Wu, Dingcai Nat Commun Article Lithium metal batteries have been considerably limited by the problems of uncontrolled dendritic lithium formation and the highly reactive nature of lithium with electrolytes. Herein, we have developed functional porous bilayer composite separators by simply blade-coating polyacrylamide-grafted graphene oxide molecular brushes onto commercial polypropylene separators. Our functional porous bilayer composite separators integrate the lithiophilic feature of hairy polyacrylamide chains and fast electrolyte diffusion pathways with the excellent mechanical strength of graphene oxide nanosheets and thus enable molecular-level homogeneous and fast lithium ionic flux on the surfaces of electrodes. As a result, dendrite-free uniform lithium deposition with a high Coulombic efficiency (98%) and ultralong-term reversible lithium plating/stripping (over 2600 h) at a high current density (2 mA cm(−2)) are achieved for lithium metal anodes. Remarkably, lithium metal anodes with an unprecedented stability of more than 1900 h cycling at an ultrahigh current density of 20 mA cm(−2) are demonstrated. Nature Publishing Group UK 2019-03-25 /pmc/articles/PMC6433896/ /pubmed/30911010 http://dx.doi.org/10.1038/s41467-019-09211-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Li, Chuanfa
Liu, Shaohong
Shi, Chenguang
Liang, Ganghao
Lu, Zhitao
Fu, Ruowen
Wu, Dingcai
Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes
title Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes
title_full Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes
title_fullStr Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes
title_full_unstemmed Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes
title_short Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes
title_sort two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433896/
https://www.ncbi.nlm.nih.gov/pubmed/30911010
http://dx.doi.org/10.1038/s41467-019-09211-z
work_keys_str_mv AT lichuanfa twodimensionalmolecularbrushfunctionalizedporousbilayercompositeseparatorstowardultrastablehighcurrentdensitylithiummetalanodes
AT liushaohong twodimensionalmolecularbrushfunctionalizedporousbilayercompositeseparatorstowardultrastablehighcurrentdensitylithiummetalanodes
AT shichenguang twodimensionalmolecularbrushfunctionalizedporousbilayercompositeseparatorstowardultrastablehighcurrentdensitylithiummetalanodes
AT liangganghao twodimensionalmolecularbrushfunctionalizedporousbilayercompositeseparatorstowardultrastablehighcurrentdensitylithiummetalanodes
AT luzhitao twodimensionalmolecularbrushfunctionalizedporousbilayercompositeseparatorstowardultrastablehighcurrentdensitylithiummetalanodes
AT furuowen twodimensionalmolecularbrushfunctionalizedporousbilayercompositeseparatorstowardultrastablehighcurrentdensitylithiummetalanodes
AT wudingcai twodimensionalmolecularbrushfunctionalizedporousbilayercompositeseparatorstowardultrastablehighcurrentdensitylithiummetalanodes