Cargando…
A rank-based algorithm of differential expression analysis for small cell line data with statistical control
To detect differentially expressed genes (DEGs) in small-scale cell line experiments, usually with only two or three technical replicates for each state, the commonly used statistical methods such as significance analysis of microarrays (SAM), limma and RankProd (RP) lack statistical power, while th...
Autores principales: | Li, Xiangyu, Cai, Hao, Wang, Xianlong, Ao, Lu, Guo, You, He, Jun, Gu, Yunyan, Qi, Lishuang, Guan, Qingzhou, Lin, Xu, Guo, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433897/ https://www.ncbi.nlm.nih.gov/pubmed/29040359 http://dx.doi.org/10.1093/bib/bbx135 |
Ejemplares similares
-
Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning
por: He, Jun, et al.
Publicado: (2017) -
Identifying differentially expressed genes from cross-site integrated data based on relative expression orderings
por: Cai, Hao, et al.
Publicado: (2018) -
Identification of reproducible drug-resistance-related dysregulated genes in small-scale cancer cell line experiments
por: Ao, Lu, et al.
Publicado: (2015) -
Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post- chemotherapy tissues
por: Tong, Mengsha, et al.
Publicado: (2015) -
A Qualitative Transcriptional Signature for Predicting Recurrence Risk of Stage I–III Bladder Cancer Patients After Surgical Resection
por: Li, Yawei, et al.
Publicado: (2019)