Cargando…
Evaluation of variable selection methods for random forests and omics data sets
Machine learning methods and in particular random forests are promising approaches for prediction based on high dimensional omics data sets. They provide variable importance measures to rank predictors according to their predictive power. If building a prediction model is the main goal of a study, o...
Autores principales: | Degenhardt, Frauke, Seifert, Stephan, Szymczak, Silke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433899/ https://www.ncbi.nlm.nih.gov/pubmed/29045534 http://dx.doi.org/10.1093/bib/bbx124 |
Ejemplares similares
-
Surrogate minimal depth as an importance measure for variables in random forests
por: Seifert, Stephan, et al.
Publicado: (2019) -
Integrating biological knowledge and gene expression data using pathway-guided random forests: a benchmarking study
por: Seifert, Stephan, et al.
Publicado: (2020) -
A review on longitudinal data analysis with random forest
por: Hu, Jianchang, et al.
Publicado: (2023) -
r2VIM: A new variable selection method for random forests in genome-wide association studies
por: Szymczak, Silke, et al.
Publicado: (2016) -
Exploitation of surrogate variables in random forests for unbiased analysis of mutual impact and importance of features
por: Voges, Lucas F, et al.
Publicado: (2023)