Cargando…
Automatic diagnosis of neurological diseases using MEG signals with a deep neural network
The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we...
Autores principales: | Aoe, Jo, Fukuma, Ryohei, Yanagisawa, Takufumi, Harada, Tatsuya, Tanaka, Masataka, Kobayashi, Maki, Inoue, You, Yamamoto, Shota, Ohnishi, Yuichiro, Kishima, Haruhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433906/ https://www.ncbi.nlm.nih.gov/pubmed/30911028 http://dx.doi.org/10.1038/s41598-019-41500-x |
Ejemplares similares
-
MEG–BMI to Control Phantom Limb Pain
por: YANAGISAWA, Takufumi, et al.
Publicado: (2018) -
Detection of Epileptic Seizures Using Phase–Amplitude Coupling in Intracranial Electroencephalography
por: Edakawa, Kohtaroh, et al.
Publicado: (2016) -
Real-Time Neurofeedback to Modulate β-Band Power in the Subthalamic Nucleus in Parkinson’s Disease Patients
por: Fukuma, Ryohei, et al.
Publicado: (2018) -
BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial
por: Yanagisawa, Takufumi, et al.
Publicado: (2020) -
Mapping ECoG channel contributions to trajectory and muscle activity prediction in human sensorimotor cortex
por: Nakanishi, Yasuhiko, et al.
Publicado: (2017)