Cargando…
ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing
In this work, we propose ReStoCNet, a residual stochastic multilayer convolutional Spiking Neural Network (SNN) composed of binary kernels, to reduce the synaptic memory footprint and enhance the computational efficiency of SNNs for complex pattern recognition tasks. ReStoCNet consists of an input l...
Autores principales: | Srinivasan, Gopalakrishnan, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434391/ https://www.ncbi.nlm.nih.gov/pubmed/30941003 http://dx.doi.org/10.3389/fnins.2019.00189 |
Ejemplares similares
-
Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware
por: Stöckel, Andreas, et al.
Publicado: (2017) -
Stochastic learning in oxide binary synaptic device for neuromorphic computing
por: Yu, Shimeng, et al.
Publicado: (2013) -
MTMC-AUR2CNet: Multi-textural multi-class attention recurrent residual convolutional neural network for COVID-19 classification using chest X-ray images
por: Gopatoti, Anandbabu, et al.
Publicado: (2023) -
3Cnet: pathogenicity prediction of human variants using multitask learning with evolutionary constraints
por: Won, Dhong-Gun, et al.
Publicado: (2021) -
A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware
por: Zou, Chenglong, et al.
Publicado: (2021)